2025年北師大版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第1頁(yè)
2025年北師大版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第2頁(yè)
2025年北師大版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第3頁(yè)
2025年北師大版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第4頁(yè)
2025年北師大版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年北師大版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷746考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共9題,共18分)1、曲線y=在點(diǎn)(1,1)處切線的傾斜角為(***)A.0°B.45°C.90°D.135°2、已知方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是()A.B.C.D.3、若當(dāng)>1時(shí),的大小關(guān)系是A.B.C.D.4、【題文】已知函數(shù)對(duì)任意的實(shí)數(shù)都有且則A.B.C.D.5、【題文】在三角形ABC中,則()A.B.C.D.以上答案都不對(duì)6、【題文】等比數(shù)列{}的前n項(xiàng)和為若A.27B.81C.243D.7297、點(diǎn)A是拋物線C1:y2=2px(p>0)與雙曲線C2:(a>0,b>0)的一條漸近線的交點(diǎn),若點(diǎn)A到拋物線C1的準(zhǔn)線的距離為p,則雙曲線C2的離心率等于()A.B.C.D.8、“|x|<2”是“x2-x-6<0”的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件9、已知函數(shù)f(x)={lgx,x>蟺|sinx|,x鈭?[鈭?蟺,蟺]x1x2x3x4x5

是方程f(x)=m

的五個(gè)不等的實(shí)數(shù)根,則x1+x2+x3+x4+x5

的取值范圍是(

)

A.(0,婁脨)

B.(鈭?婁脨,婁脨)

C.(lg婁脨,1)

D.(婁脨,10)

評(píng)卷人得分二、填空題(共5題,共10分)10、已知在區(qū)間上,對(duì)軸上任意兩點(diǎn)都有若則的大小關(guān)系為_(kāi)___.11、【題文】據(jù)統(tǒng)計(jì),高三年級(jí)男生人數(shù)占該年級(jí)學(xué)生人數(shù)在上次考試中,男、女生數(shù)學(xué)平均分?jǐn)?shù)分別為則這次考試該年級(jí)學(xué)生平均分?jǐn)?shù)為_(kāi)________.12、【題文】已知程序框圖如右,則輸出的=____.

13、【題文】直線與垂直,則______.14、已知正數(shù)x,y滿足x+y-xy=0,則3x+2y的最小值為_(kāi)_____.評(píng)卷人得分三、作圖題(共7題,共14分)15、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

16、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)17、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)18、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

19、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最?。ㄈ鐖D所示)20、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)21、分別畫(huà)一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、解答題(共2題,共20分)22、已知函數(shù)在處取得極小值2.(1)求函數(shù)的解析式;(2)求函數(shù)的極值;(3)設(shè)函數(shù)若對(duì)于任意總存在使得求實(shí)數(shù)的取值范圍.23、如圖所示,在邊長(zhǎng)為60cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體箱子,箱底的邊長(zhǎng)是多少時(shí),箱子的容積最大?最大容積是多少?評(píng)卷人得分五、計(jì)算題(共4題,共28分)24、如圖,已知正方形ABCD的邊長(zhǎng)是8,點(diǎn)E在BC邊上,且CE=2,點(diǎn)P是對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),求PE+PC的最小值.25、1.(本小題滿分12分)已知函數(shù)在處取得極值.(1)求實(shí)數(shù)a的值;(2)若關(guān)于x的方程在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;(3)證明:(參考數(shù)據(jù):ln2≈0.6931).26、解不等式組.27、在(1+x)6(1+y)4的展開(kāi)式中,記xmyn項(xiàng)的系數(shù)為f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.評(píng)卷人得分六、綜合題(共3題,共24分)28、(2009?新洲區(qū)校級(jí)模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個(gè)分支,點(diǎn)P是這條曲線上任意一點(diǎn),它的坐標(biāo)是(a、b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點(diǎn)E、F.則AF?BE=____.29、已知f(x)=﹣3x2+a(6﹣a)x+6.30、已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.參考答案一、選擇題(共9題,共18分)1、B【分析】【解析】【答案】B2、D【分析】試題分析:畫(huà)出的圖象,然后y=a在何范圍內(nèi)與之有兩交點(diǎn),發(fā)現(xiàn)a屬于符合題意考點(diǎn):指數(shù)函數(shù)的圖象,平移.【解析】【答案】D3、B【分析】【解析】

因?yàn)槟敲串?dāng)x>1時(shí),則利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的值域可知,0<1,b>1,c<0,因此選B【解析】【答案】B4、B【分析】【解析】

試題分析:由已知可得可得為一等差數(shù)列,又則即故選B.

考點(diǎn):等差數(shù)列的定義【解析】【答案】B5、C【分析】【解析】

試題分析:根據(jù)題意,由于三角形ABC中,則由正弦定理可知由于a>b,可知B故選C.

考點(diǎn):解三角形。

點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)正弦定理來(lái)求解邊和角關(guān)系來(lái)求解三角形,屬于基礎(chǔ)題?!窘馕觥俊敬鸢浮緾6、C【分析】【解析】解:因?yàn)榈缺葦?shù)列{}的前n項(xiàng)和為若。

【解析】【答案】C7、C【分析】【解答】解:取雙曲線的其中一條漸近線:y=x;

聯(lián)立?

故A().

∵點(diǎn)A到拋物線C1的準(zhǔn)線的距離為p;

∴+=p;

∴=.

∴雙曲線C2的離心率e===.

故選:C.

【分析】先根據(jù)條件求出店A的坐標(biāo),再結(jié)合點(diǎn)A到拋物線C1的準(zhǔn)線的距離為p;得到=再代入離心率計(jì)算公式即可得到答案.8、A【分析】【分析】分別解出兩不等式;再進(jìn)行判斷.

【解答】由|x|<2得-2<x<2,由x2-x-6<0得-2<x<3,“-2<x<2”“-2<x<3”;反之不成立.

故選A.9、D【分析】解:函數(shù)f(x)={lgx,x>蟺|sinx|,x鈭?[鈭?蟺,蟺]

圖象如圖所示。

則x1

與x4

對(duì)稱(chēng),x2

與x3

對(duì)稱(chēng),所以x1+x4=0x2+x3=010>x5>婁脨

所以10>x1+x2+x3+x4+x5>婁脨

故選D.

作出函數(shù)的圖象;根據(jù)函數(shù)圖象的對(duì)稱(chēng)性,即可得到結(jié)論.

本題考查函數(shù)的圖象,考查方程的根,正確作出函數(shù)的圖象是關(guān)鍵.【解析】D

二、填空題(共5題,共10分)10、略

【分析】由圖可知【解析】【答案】11、略

【分析】【解析】

試題分析:設(shè)高三年級(jí)的男學(xué)生數(shù)為則該校高三年級(jí)的女學(xué)生人數(shù)為則這次考試該年級(jí)學(xué)生的平均數(shù)為

考點(diǎn):樣本的平均數(shù)【解析】【答案】12、略

【分析】【解析】略【解析】【答案】913、略

【分析】【解析】略【解析】【答案】114、略

【分析】解:∵x+y-xy=0;

∴+-=1;

故3x+2y=(3x+2y)(+)=++5≥2+5=5+2

當(dāng)且僅當(dāng)=時(shí)“=”成立;

故答案為:5+2.

得到+-=1;根據(jù)基本不等式的性質(zhì)求出3x+2y的最小值即可.

本題考查了基本不等式的性質(zhì),注意滿足條件“一正二定三相等”,本題是一道基礎(chǔ)題.【解析】5+2三、作圖題(共7題,共14分)15、略

【分析】【分析】根據(jù)軸對(duì)稱(chēng)的性質(zhì)作出B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱(chēng)的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

16、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A',關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A';關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱(chēng);A與A″關(guān)于ON對(duì)稱(chēng);

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.17、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最??;

理由是兩點(diǎn)之間,線段最短.18、略

【分析】【分析】根據(jù)軸對(duì)稱(chēng)的性質(zhì)作出B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱(chēng)點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱(chēng)的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

19、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A',關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱(chēng)點(diǎn)A';關(guān)于ON的A對(duì)稱(chēng)點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱(chēng);A與A″關(guān)于ON對(duì)稱(chēng);

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.20、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最小;

理由是兩點(diǎn)之間,線段最短.21、解:畫(huà)三棱錐可分三步完成。

第一步:畫(huà)底面﹣﹣畫(huà)一個(gè)三角形;

第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);

第三步:畫(huà)側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).

畫(huà)四棱可分三步完成。

第一步:畫(huà)一個(gè)四棱錐;

第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段;

第三步:將多余線段擦去.

【分析】【分析】畫(huà)三棱錐和畫(huà)四棱臺(tái)都是需要先畫(huà)底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫(huà)四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共2題,共20分)22、略

【分析】試題分析:(1)根據(jù)函數(shù)在極值處導(dǎo)函數(shù)為0,極小值為2聯(lián)立方程組即可求得m,n;(2)由(1)求得函數(shù)解析式,對(duì)函數(shù)求導(dǎo)且讓導(dǎo)函數(shù)為0,即可求得極大值和極小值;(3)依題意只需即可,當(dāng)時(shí),函數(shù)有最小值-2,即對(duì)任意總存在使得的最小值不大于-2;而分三種情況討論即可.試題解析:(1)∵函數(shù)在處取得極小值2,∴1分又∴由②式得m=0或n=1,但m=0顯然不合題意∴代入①式得m=4∴2分經(jīng)檢驗(yàn),當(dāng)時(shí),函數(shù)在處取得極小值2∴函數(shù)的解析式為4分(2)∵函數(shù)的定義域?yàn)榍矣桑?)有令解得:∴當(dāng)x變化時(shí),的變化情況如下表:。x(-∞,-1)-1(-1,1)1(1,+∞)—0+0—減極小值-2增極大值2減∴時(shí),函數(shù)有極小值-2;當(dāng)時(shí),函數(shù)有極大值28分(3)依題意只需即可.∵函數(shù)在時(shí),在時(shí),且∴由(2)知函數(shù)的大致圖象如圖所示:∴當(dāng)時(shí),函數(shù)有最小值-210分又對(duì)任意總存在使得∴當(dāng)時(shí),的最小值不大于-2又①當(dāng)時(shí),的最小值為∴得②當(dāng)時(shí),的最小值為∴得③當(dāng)時(shí),的最小值為∴得或又∵∴此時(shí)a不存在綜上所述,a的取值范圍是(-∞,-1]∪[3,+∞).13分考點(diǎn):導(dǎo)數(shù)的應(yīng)用、函數(shù)思想、分類(lèi)討論思想.【解析】【答案】(1)函數(shù)的解析式為(2)時(shí),函數(shù)有極小值-2;當(dāng)時(shí),函數(shù)有極大值2;(3)a的取值范圍是(-∞,-1]∪[3,+∞).23、略

【分析】【解析】試題分析:設(shè)箱子的底邊長(zhǎng)為xcm,則箱子高h(yuǎn)=cm.箱子容積V=V(x)=x2h=(0<60).求V(x)的導(dǎo)數(shù),得V′(x)=60x-x2=0,解得x1=0(不合題意,舍去),x2=40.當(dāng)x在(0,60)內(nèi)變化時(shí),導(dǎo)數(shù)V′(x)的正負(fù)如下表:。x(0,40)40(40,60)V′(x)+0-因此在x=40處,函數(shù)V(x)取得極大值,并且這個(gè)極大值就是函數(shù)V(x)的最大值.將x=40代入V(x)得最大容積V=402×=16000(cm3).所以箱子底邊長(zhǎng)取40cm時(shí),容積最大,最大容積為16000cm3.考點(diǎn):本題主要考查函數(shù)模型,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值?!窘馕觥俊敬鸢浮肯渥拥走呴L(zhǎng)取40cm時(shí),容積最大,最大容積為16000cm3.五、計(jì)算題(共4題,共28分)24、略

【分析】【分析】要求PE+PC的最小值,PE,PC不能直接求,可考慮通過(guò)作輔助線轉(zhuǎn)化PE,PC的值,從而找出其最小值求解.【解析】【解答】解:如圖;連接AE;

因?yàn)辄c(diǎn)C關(guān)于BD的對(duì)稱(chēng)點(diǎn)為點(diǎn)A;

所以PE+PC=PE+AP;

根據(jù)兩點(diǎn)之間線段最短可得AE就是AP+PE的最小值;

∵正方形ABCD的邊長(zhǎng)為8cm;CE=2cm;

∴BE=6cm;

∴AE==10cm.

∴PE+PC的最小值是10cm.25、略

【分析】【解析】

(1)f'(x)=1+,由題意,得f'(1)=0Ta=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0設(shè)g(x)=x2-3x+lnx+b(x>0)則g'(x)=2x-3+=4分當(dāng)x變化時(shí),g'(x),g(x)的變化情況如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗極大值↘極小值↗b-2+ln2當(dāng)x=1時(shí),g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根高考+資-源-網(wǎng)由TT+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)設(shè)Φ(x)=lnx-(x2-1)則Φ'(x)=-=當(dāng)x≥2時(shí),Φ'(x)<0T函數(shù)Φ(x)在[2,+∞)上是減函數(shù),∴Φ(x)≤Φ(2)=ln2-<0Tlnx<(x2-1)∴當(dāng)x≥2時(shí),∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.26、解:由{#mathml#}x+3x+1

{#/mathml#}≤2得:{#mathml#}x?1x+1

{#/mathml#}≥0,解得x<﹣1或x≥1;由x2﹣6x﹣8<0得:3﹣{#mathml#}17

{#/mathml#}<x<3+{#mathml#}17

{#/mathml#},

∴不等式組得解集為(3﹣{#mathml#}17

{#/mathml#},﹣1)∪[1,3+{#mathml#}17

{#/mathml#})【分析】【分析】分別解不等式≤2與x2﹣6x﹣8<0,最后取其交集即可.27、解:(1+x)6(1+y)4的展開(kāi)式中,含x3y0的系數(shù)是:C63C40=20.f(3,0)=20;含x2y1的系數(shù)是C62C41=60;f(2,1)=60;

含x1y2的系數(shù)是C61C42=36;f(1,2)=36;

含x0y3的系數(shù)是C60C43=4;f(0,3)=4;

∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120【分析】【分析】由題意依次求出x3y0,x2y1,x1y2,x0y3,項(xiàng)的系數(shù),求和即可.六、綜合題(共3題,共24分)28、略

【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標(biāo)是b,因而F點(diǎn)的縱坐標(biāo)是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點(diǎn),因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標(biāo)為(a,);且PN⊥OB,PM⊥OA;

∴N的坐標(biāo)為(0,);M點(diǎn)的坐標(biāo)為(a,0);

∴BN=1-;

在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);

∴NF=BN=1-;

∴F點(diǎn)的坐標(biāo)為(1-,);

∵OM=a;

∴AM=1-a;

∴EM=AM=1-a;

∴E點(diǎn)的坐標(biāo)為(a;1-a);

∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;

∴AF?BE=1.

故答案為:1.29、解:(Ⅰ)∵f(x)=﹣3x2+a(6﹣a)x+6;f(1)>0

∴﹣3+a(6﹣

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論