版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年冀教新版高一數(shù)學(xué)下冊月考試卷579考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、圓心為(1;2),且半徑長為5的圓的方程為()
A.(x+1)2+(y+2)2=25
B.(x+1)2+(y+2)2=5
C.(x-1)2+(y-2)2=25
D.(x-1)2+(y-2)2=5
2、【題文】已知集合則()A.B.C.D.3、【題文】如果那么a、b間的關(guān)系是A.B.C.D.4、已知α是第二象限的角,那么是第幾象限的角()A.第一、二象限角B.第二、三象限角C.第一、三象限角D.第三、四象限角5、函數(shù)f(x)=lnx+2x﹣7的零點所在的區(qū)間為()A.(0,1)B.(1,2)C.(2,3)D.(3,4)評卷人得分二、填空題(共7題,共14分)6、函數(shù)f(x)=ax-1+2(a>0,a≠1)的圖象恒過定點____.7、△ABC是邊長為1的正三角形,點O是平面上任意一點,則=____.8、在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是____.9、右邊所示的程序,若輸入則輸出10、【題文】函數(shù)①②③④⑤中,滿足條件“”的有____.
(寫出所有正確的序號)11、【題文】已知命題p:函數(shù)y=lg(2x-m+1)定義域為R;命題q:函數(shù)f(x)=(5-2m)x是增函數(shù).若“p∧q”為真命題,則實數(shù)m的取值范圍是___________12、已知點P在線段AB上,且|=4||,設(shè)=λ則實數(shù)λ的值為______.評卷人得分三、計算題(共6題,共12分)13、已知(a>b>0)是方程x2-5x+2=0的兩個實根,求的值.14、相交兩圓半徑分別是5厘米、3厘米,公共弦長2厘米,那么這兩圓的公切線長為____厘米.15、(2007?綿陽自主招生)如圖,在矩形ABCD中,AB=8cm,BC=16cm,動點P從點A出發(fā),以1cm/秒的速度向終點B移動,動點Q從點B出發(fā)以2cm/秒的速度向終點C移動,則移動第到____秒時,可使△PBQ的面積最大.16、若∠A是銳角,且cosA=,則cos(90°-A)=____.17、(2008?寧波校級自主招生)如圖,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,則∠CDE=____°.18、計算:0.0081+(4)2+()﹣16﹣0.75+2.評卷人得分四、作圖題(共3題,共18分)19、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費用最省,并求出其費用.20、作出下列函數(shù)圖象:y=21、以下是一個用基本算法語句編寫的程序;根據(jù)程序畫出其相應(yīng)的程序框圖.
評卷人得分五、證明題(共4題,共12分)22、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.23、如圖,已知:D、E分別為△ABC的AB、AC邊上的點,DE∥BC,BE與CD交于點O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.24、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.25、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分六、綜合題(共4題,共16分)26、已知直線l1:x-y+2=0;l2:x+y-4=0,兩條直線的交點為A,點B在l1上,點C在l2上,且,當(dāng)B,C變化時,求過A,B,C三點的動圓形成的區(qū)域的面積大小為____.27、已知函數(shù)y1=px+q和y2=ax2+bx+c的圖象交于A(1,-1)和B(3,1)兩點,拋物線y2與x軸交點的橫坐標(biāo)為x1,x2,且|x1-x2|=2.
(1)求這兩個函數(shù)的解析式;
(2)設(shè)y2與y軸交點為C,求△ABC的面積.28、如圖,矩形ABCD中,AD<AB,P、Q分別為AD、BC的中點.N為DC上的一點,△AND沿直線AN對折點D恰好與PQ上的M點重合.若AD、AB分別為方程x2-6x+8=0的兩根.
(1)求△AMN的外接圓的直徑;
(2)四邊形ADNM有內(nèi)切圓嗎?有則求出內(nèi)切圓的面積,沒有請說明理由.29、如圖1;△ABC與△EFA為等腰直角三角形,AC與AE重合,AB=EF=9,∠BAC=∠AEF=90°,固定△ABC,將△EFA繞點A順時針旋轉(zhuǎn),當(dāng)AF邊與AB邊重合時,旋轉(zhuǎn)中止.不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設(shè)AE;AF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖2.
(1)問:在圖2中,始終與△AGC相似的三角形有____及____;
(2)設(shè)CG=x;BH=y,GH=z,求:
①y關(guān)于x的函數(shù)關(guān)系式;
②z關(guān)于x的函數(shù)關(guān)系式;(只要求根據(jù)第(1)問的結(jié)論說明理由)
(3)直接寫出:當(dāng)x為何值時,AG=AH.參考答案一、選擇題(共5題,共10分)1、C【分析】
根據(jù)題意得:所求圓方程為(x-1)2+(y-2)2=25.
故選C
【解析】【答案】根據(jù)圓心坐標(biāo)與半徑寫出圓標(biāo)準(zhǔn)方程即可.
2、B【分析】【解析】
試題分析:因為=所以
考點:本題考查集合的運算;對數(shù)不等式;對數(shù)函數(shù)的單調(diào)性。
點評:解對數(shù)不等式的主要方法是利用公式化為同底數(shù)的,然后利用對數(shù)函數(shù)的單調(diào)性即可?!窘馕觥俊敬鸢浮緽3、B【分析】【解析】
試題分析:首先有其次由得則所以故選B.
考點:對數(shù)函數(shù)的性質(zhì).【解析】【答案】B4、C【分析】【解答】解:∵α是第二象限的角,∴2kπ+<α<2kπ+π;k∈z;
∴kπ+<<kπ+k∈z,故是第一;三象限角;
故選C.
【分析】由α是第二象限的角,可得2kπ+<α<2kπ+π,故kπ+<<kπ+k∈z,從而得到所在的象限.5、C【分析】【解答】解:∵函數(shù)f(x)=lnx﹣7+2x;x∈(0,+∞)單調(diào)遞增;
f(1)=0﹣7+2=﹣5;
f(2)=ln2﹣3<0;
f(3)=ln3﹣1>0;
∴根據(jù)函數(shù)零點的存在性定理得出:零點所在區(qū)間是(2;3).
故選:C.
【分析】根據(jù)函數(shù)的單調(diào)性,零點的存在性定理求解特殊函數(shù)值即可判斷.二、填空題(共7題,共14分)6、略
【分析】
根據(jù)指數(shù)函數(shù)過(0;1)點;
∴函數(shù)f(x)=ax-1+2當(dāng)指數(shù)x-1=0即x=1時;y=3
∴函數(shù)的圖象過(1;3)
故答案為:(1;3).
【解析】【答案】根據(jù)所有的指數(shù)函數(shù)過(0,1)點,函數(shù)f(x)=ax-1+2當(dāng)指數(shù)x-1=0即x=1時;y=3,得到函數(shù)的圖象過(1,3)
7、略
【分析】
因為△ABC是邊長為1的正三角形且點O是平面上任意一點,所以對于=
∴==.
故答案為:.
【解析】【答案】因為△ABC是邊長為1的正三角形且點O是平面上任意一點,對于=然后利用向量的模等于該向量平方的算數(shù)根進(jìn)而求解.
8、略
【分析】
由莖葉圖可得甲組共有9個數(shù)據(jù)中位數(shù)為45
乙組共9個數(shù)據(jù)中位數(shù)為46
故答案為45;46
【解析】【答案】本題主要考查了莖葉圖所表達(dá)的含義;以及從樣本數(shù)據(jù)中提取數(shù)字特征的能力,屬容易題.
9、略
【分析】因為x=18>10,所以【解析】【答案】10、略
【分析】【解析】解:因為函數(shù)①②③④⑤中,滿足條件“”的有①③。【解析】【答案】①③11、略
【分析】【解析】略【解析】【答案】12、略
【分析】解:∵點P在線段AB上,且||=4||,=λ
∴=3且與方向相反;
∴λ=-3.
故答案為:-3.
點P在線段AB上,且||=4||,=λ可得=3且與方向相反;即可得出.
本題考查了向量共線定理,考查了推理能力與計算能力,屬于中檔題.【解析】-3三、計算題(共6題,共12分)13、略
【分析】【分析】先把方程的兩根代入程x2-5x+2=0,根據(jù)根與系數(shù)的關(guān)系得出+、的值,然后再代入求的值即可.【解析】【解答】解:∵是方程x2-5x+2=0的兩實根;
∴a-5+2=0;
∴b-5+2=0,+=5,=2.
∴原式=[]÷+
=+=+=2?=2?=514、略
【分析】【分析】①連接CD交EF于O;連接CE,CA,DB,過D作DQ⊥CA于Q,根據(jù)勾股定理求出CO;DO,求出CD,證矩形DQAB,推出AQ=DB,AB=DQ,根據(jù)勾股定理求出DQ即可;
②求出CD=2-2,根據(jù)勾股定理求出即可.【解析】【解答】解:有兩種情況:
①連接CD交EF于O;連接CE,CA,DB,過D作DQ⊥CA于Q;
∵EF是圓C和圓D的公共弦;
∴CD⊥EF;EO=FO=1;
在△CDE中,由勾股定理得:CO==2;
同理求出DO=2;
∴CD=2+2;
∵AB是兩圓的外公切線;
∴QA⊥AB;DB⊥AB;
∵DQ⊥CA;
∴∠DQA=∠CAB=∠DBA=90°;
∴四邊形AQDB是矩形,
∴AB=DQ;AQ=DB=3;
∴CQ=5-3=2;
在△CDQ中,由勾股定理得:DQ==4+2;
②如圖所示:
同理求出AB=4-2.
故答案為:4±2.15、略
【分析】【分析】表示出PB,QB的長,利用△PBQ的面積等于y列式求值即可.【解析】【解答】解:設(shè)x秒后△PBQ的面積y.則
AP=x;QB=2x.
∴PB=8-x.
∴y=×(8-x)2x=-x2+8x=-(x-4)2+16;
∴當(dāng)x=4時;面積最大.
故答案為4.16、略
【分析】【分析】首先根據(jù)誘導(dǎo)公式得出cos(90°-A)=sinA,再根據(jù)cosA2+sinA2=1求解即可.【解析】【解答】解:∵cosA2+sinA2=1;
又A為銳角,cosA=;
∴sinA=.
∴cos(90°-A)=sinA=.
故答案為:.17、略
【分析】【分析】根據(jù)等腰三角形性質(zhì)推出∠1=∠2,∠B=∠C,根據(jù)三角形的外角性質(zhì)得到∠1+∠3=∠B+15°,∠2=∠C+∠3,推出2∠3=15°即可.【解析】【解答】解:∵AD=AE,AC=AB,
∴∠1=∠2;∠B=∠C;
∵∠1+∠3=∠B+∠BAD=∠B+15°;
∠2=∠1=∠C+∠3;
∴∠C+∠3+∠3=∠B+15°;
2∠3=15°;
∴∠3=7.5°;
即∠CDE=7.5°;
故答案為:7.5°.18、解:原式=++﹣24×(﹣0.75)+5=0.3++﹣+5=5.55【分析】【分析】根據(jù)指數(shù)冪和對數(shù)的運算性質(zhì)化簡即可.四、作圖題(共3題,共18分)19、略
【分析】【分析】作點A關(guān)于河CD的對稱點A′,當(dāng)水廠位置O在線段AA′上時,鋪設(shè)管道的費用最?。窘馕觥俊窘獯稹拷猓鹤鼽cA關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.
∵點A與點A′關(guān)于CD對稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設(shè)管道的最省費用為10000元.20、【解答】冪函數(shù)y={#mathml#}x32
{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過原點且單調(diào)遞增,如圖所示;
【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫出題目中的函數(shù)圖象即可.21、解:程序框圖如下:
【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號及其作用,即可畫出流程圖.五、證明題(共4題,共12分)22、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.23、略
【分析】【分析】延長AM,過點B作CD的平行線與AM的延長線交于點F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長AM;過點B作CD的平行線與AM的延長線交于點F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.24、略
【分析】【分析】構(gòu)造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.25、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.六、綜合題(共4題,共16分)26、略
【分析】【分析】由題意可知當(dāng)A與B或C重合時,所成的圓最大,它包括了所有的圓,所以求出半徑為2時圓的面積即為動圓所形成的區(qū)域的面積.【解析】【解答】解:當(dāng)A與B或C重合時,此時圓的面積最大,此時圓的半徑r=BC=2;
所以此時圓的面積S=πr2=π(2)2=8π;
則過A;B、C三點的動圓所形成的區(qū)域的面積為8π.
故答案為8π.27、略
【分析】【分析】(1)將A、B兩點代入函數(shù)y1=px+q中,可求函數(shù)解析式,將A、B代入y2=ax2+bx+c中,再利用根與系數(shù)關(guān)系,列方程組求y2的函數(shù)關(guān)系式;
(2)根據(jù)A、B、C三點坐標(biāo),利用組合圖形求三角形的面積.【解析】【解答】解:(1)將A、B兩點坐標(biāo)代入函數(shù)y1=px+q中,得,解得;
∴函數(shù)y1=x-2;
由根與系數(shù)關(guān)系,得x1+x2=-,x1?x2=;
∵|x1-x2|=2,∴(x1-x2)2=8,即(x1+x2)2-4x1?x2=8,b2-4ac=8a2;
將A、B兩點坐標(biāo)代入函數(shù)y2=ax2+bx+c中,得,解得或;
∴函數(shù)y2=x2-x-或y2=-x2+3x-;
(2)當(dāng)y2=x2-x-時,C(0,-);
S△ABC=×(1+3)×2-×3×(1+)-×1×=;
當(dāng)y2=-x2+3x-時,C(0,-);
S△ABC=×(1+)×3-×(1+3)×2-×1×(-1)=.28、略
【分析】【分析】(1)首先解方程求出AD;AB;利用折疊前后圖形不變得出AM=AD=2,以及得出∠NAM=30°,進(jìn)而求出AN,即是Rt△AMN的外接圓直徑;
(2)首先得出I所在位置,得出四邊形IEDF為正方形,再利用三角形相似求出內(nèi)切圓的半徑.【解析】【解答】解:(1)x2-6x+8=0得x1=2,x2=4;
又AD;AB為方程的兩根;AD<AB;
∴AD=2;AB=4;
∴AM=AD=2;AP=1;
在Rt△AMP中;∠PAM=60°;
∴∠PMA=30°;
∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度硬面堆、藥芯焊線戰(zhàn)略市場規(guī)劃報告
- 年度鐘表與計時儀器競爭策略分析報告
- 二零二五年度特種吊車租賃與運輸服務(wù)合同3篇
- 二零二五版高管勞動合同樣本:股權(quán)激勵與競業(yè)禁止條款3篇
- 二零二五年空調(diào)銷售與節(jié)能產(chǎn)品認(rèn)證合同3篇
- 2025年度城市綠地養(yǎng)護(hù)及植物配置優(yōu)化合同4篇
- 2025年度私人診所與患者之間的遠(yuǎn)程醫(yī)療服務(wù)合同
- 2024版簡易協(xié)議管理軟件解決方案一
- 二零二五年度新能源材料采購代理協(xié)議3篇
- 二零二四年太陽能光伏發(fā)電項目合同
- 五年級數(shù)學(xué)(小數(shù)乘除法)計算題專項練習(xí)及答案
- 冷鏈凍品研究報告-冷鏈凍品行業(yè)市場深度分析及發(fā)展策略研究報告(2024年)
- 電梯廣告機(jī)可行性方案
- 辦公樓暖通空調(diào)系統(tǒng)的節(jié)能優(yōu)化方案
- 泵車述職報告
- 建材協(xié)會管理制度
- 關(guān)于春聯(lián)來源的研究報告
- 2024年山西文旅集團(tuán)招聘筆試參考題庫含答案解析
- 恢復(fù)中華人民共和國國籍申請表
- 220kV及以下變電站設(shè)備全面巡視標(biāo)準(zhǔn)
- (完整word版)doing-todo練習(xí)題
評論
0/150
提交評論