下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)廣東新安職業(yè)技術(shù)學(xué)院
《機(jī)器學(xué)習(xí)D》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在自然語(yǔ)言處理任務(wù)中,如文本分類,詞向量表示是基礎(chǔ)。常見的詞向量模型有Word2Vec和GloVe等。假設(shè)我們有一個(gè)大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時(shí)考慮到計(jì)算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項(xiàng)是不準(zhǔn)確的?()A.Word2Vec可以通過(guò)CBOW和Skip-gram兩種方式訓(xùn)練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計(jì)信息,能夠捕捉更全局的語(yǔ)義關(guān)系C.Word2Vec訓(xùn)練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務(wù)上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務(wù)2、在進(jìn)行特征選擇時(shí),有多種方法可以評(píng)估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評(píng)估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過(guò)計(jì)算特征引入前后信息熵的變化來(lái)衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評(píng)估特征的重要性C.隨機(jī)森林中的特征重要性評(píng)估是基于特征對(duì)模型性能的貢獻(xiàn)程度D.所有的特征重要性評(píng)估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證3、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在多重共線性,以下哪種方法可以用于解決這個(gè)問(wèn)題?()A.特征選擇B.正則化C.主成分回歸D.以上方法都可以4、想象一個(gè)語(yǔ)音識(shí)別的系統(tǒng)開發(fā),需要將輸入的語(yǔ)音轉(zhuǎn)換為文字。語(yǔ)音數(shù)據(jù)具有連續(xù)性、變異性和噪聲等特點(diǎn)。以下哪種模型架構(gòu)和訓(xùn)練方法可能是最有效的?()A.隱馬爾可夫模型(HMM)結(jié)合高斯混合模型(GMM),傳統(tǒng)方法,對(duì)短語(yǔ)音處理較好,但對(duì)復(fù)雜語(yǔ)音的適應(yīng)性有限B.深度神經(jīng)網(wǎng)絡(luò)-隱馬爾可夫模型(DNN-HMM),結(jié)合了DNN的特征學(xué)習(xí)能力和HMM的時(shí)序建模能力,但訓(xùn)練難度較大C.端到端的卷積神經(jīng)網(wǎng)絡(luò)(CNN)語(yǔ)音識(shí)別模型,直接從語(yǔ)音到文字,減少中間步驟,但對(duì)長(zhǎng)語(yǔ)音的處理可能不夠靈活D.基于Transformer架構(gòu)的語(yǔ)音識(shí)別模型,利用自注意力機(jī)制捕捉長(zhǎng)距離依賴,性能優(yōu)秀,但計(jì)算資源需求大5、在機(jī)器學(xué)習(xí)中,模型評(píng)估是非常重要的環(huán)節(jié)。以下關(guān)于模型評(píng)估的說(shuō)法中,錯(cuò)誤的是:常用的模型評(píng)估指標(biāo)有準(zhǔn)確率、精確率、召回率、F1值等??梢酝ㄟ^(guò)交叉驗(yàn)證等方法來(lái)評(píng)估模型的性能。那么,下列關(guān)于模型評(píng)估的說(shuō)法錯(cuò)誤的是()A.準(zhǔn)確率是指模型正確預(yù)測(cè)的樣本數(shù)占總樣本數(shù)的比例B.精確率是指模型預(yù)測(cè)為正類的樣本中真正為正類的比例C.召回率是指真正為正類的樣本中被模型預(yù)測(cè)為正類的比例D.模型的評(píng)估指標(biāo)越高越好,不需要考慮具體的應(yīng)用場(chǎng)景6、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對(duì)性能沒(méi)有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)7、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過(guò)擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會(huì)使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過(guò)對(duì)模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對(duì)模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好8、在進(jìn)行模型選擇時(shí),除了考慮模型的性能指標(biāo),還需要考慮模型的復(fù)雜度和可解釋性。假設(shè)我們有多個(gè)候選模型。以下關(guān)于模型選擇的描述,哪一項(xiàng)是不正確的?()A.復(fù)雜的模型通常具有更高的擬合能力,但也更容易過(guò)擬合B.簡(jiǎn)單的模型雖然擬合能力有限,但更容易解釋和理解C.對(duì)于一些對(duì)可解釋性要求較高的任務(wù),如醫(yī)療診斷,應(yīng)優(yōu)先選擇復(fù)雜的黑盒模型D.在實(shí)際應(yīng)用中,需要根據(jù)具體問(wèn)題和需求綜合權(quán)衡模型的性能、復(fù)雜度和可解釋性9、在一個(gè)情感分析任務(wù)中,需要同時(shí)考慮文本的語(yǔ)義和語(yǔ)法信息。以下哪種模型結(jié)構(gòu)可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠提取局部特征,但對(duì)序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),擅長(zhǎng)處理序列數(shù)據(jù),但長(zhǎng)期依賴問(wèn)題較嚴(yán)重C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長(zhǎng)期記憶能力,但計(jì)算復(fù)雜度較高D.結(jié)合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢(shì)10、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過(guò)程中,損失函數(shù)的值一直沒(méi)有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過(guò)高B.模型過(guò)于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能11、在一個(gè)多分類問(wèn)題中,如果類別之間存在層次關(guān)系,以下哪種分類方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類B.一對(duì)一分類C.一對(duì)多分類D.以上方法都可以12、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時(shí),以下關(guān)于策略優(yōu)化方法的描述,哪一項(xiàng)是不正確的?()A.策略梯度方法通過(guò)直接計(jì)算策略的梯度來(lái)更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過(guò)限制策略更新的幅度來(lái)保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇13、在使用隨機(jī)森林算法進(jìn)行分類任務(wù)時(shí),以下關(guān)于隨機(jī)森林特點(diǎn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)森林是由多個(gè)決策樹組成的集成模型,通過(guò)投票來(lái)決定最終的分類結(jié)果B.隨機(jī)森林在訓(xùn)練過(guò)程中對(duì)特征進(jìn)行隨機(jī)抽樣,增加了模型的隨機(jī)性和多樣性C.隨機(jī)森林對(duì)于處理高維度數(shù)據(jù)和缺失值具有較好的魯棒性D.隨機(jī)森林的訓(xùn)練速度比單個(gè)決策樹慢,因?yàn)樾枰獦?gòu)建多個(gè)決策樹14、在一個(gè)強(qiáng)化學(xué)習(xí)場(chǎng)景中,智能體需要在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí)最優(yōu)策略。如果環(huán)境的獎(jiǎng)勵(lì)信號(hào)稀疏,以下哪種技術(shù)可以幫助智能體更好地學(xué)習(xí)?()A.獎(jiǎng)勵(lì)塑造B.策略梯度估計(jì)的改進(jìn)C.經(jīng)驗(yàn)回放D.以上技術(shù)都可以15、在進(jìn)行遷移學(xué)習(xí)時(shí),以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場(chǎng)景和優(yōu)勢(shì),哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時(shí),可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個(gè)領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個(gè)不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對(duì)于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述在智能水資源管理中,機(jī)器學(xué)習(xí)的作用。2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在結(jié)構(gòu)生物學(xué)中的結(jié)構(gòu)解析。3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在旅游規(guī)劃中的路線推薦。4、(本題5分)機(jī)器學(xué)習(xí)中如何利用強(qiáng)化學(xué)習(xí)解決問(wèn)題?三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)論述半監(jiān)督學(xué)習(xí)在實(shí)際應(yīng)用中的價(jià)值。分析其與監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)的結(jié)合方式,以及在數(shù)據(jù)有限情況下的優(yōu)勢(shì)。2、(本題5分)論述在機(jī)器學(xué)習(xí)中,如何處理不均衡的特征重要性。探討特征選擇方法在這種情況下的應(yīng)用和效果。3、(本題5分)論述機(jī)器學(xué)習(xí)在金融市場(chǎng)情緒分析中的應(yīng)用,分析其對(duì)投資決策的參考價(jià)值。4、(本題5分)闡述機(jī)器學(xué)習(xí)中的強(qiáng)化學(xué)習(xí)在游戲中的應(yīng)用。分析游戲策略學(xué)習(xí)、智能對(duì)手生成、游戲難度調(diào)整等方面的強(qiáng)化學(xué)習(xí)方法和應(yīng)用效果。5、(本題5分)分析機(jī)器學(xué)習(xí)中的回歸分析方法。包括線性回歸、多項(xiàng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州大學(xué)《行政監(jiān)督學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財(cái)經(jīng)大學(xué)《生物制藥綜合實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽(yáng)學(xué)院《裝飾材料構(gòu)造與人體工程學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025江西建筑安全員C證考試(專職安全員)題庫(kù)附答案
- 2025青海建筑安全員B證考試題庫(kù)及答案
- 2025年四川建筑安全員C證考試題庫(kù)
- 貴陽(yáng)信息科技學(xué)院《機(jī)械原理(實(shí)驗(yàn))》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《工業(yè)發(fā)酵分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025貴州省建筑安全員《A證》考試題庫(kù)
- 廣州新華學(xué)院《實(shí)驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 人教版六年級(jí)上冊(cè)道德與法治知識(shí)點(diǎn)
- 期貨從業(yè)資格(期貨基礎(chǔ)知識(shí))歷年真題試卷匯編27
- 人工智能學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 北師大版(2019)必修第二冊(cè)Unit 5 Humans and nature Lesson 3 Race to the pole教學(xué)設(shè)計(jì)
- 《毛概》23版學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 臨建工程量清單
- 宜賓五糧液股份有限公司招聘考試試卷及答案
- 2024CSCO胰腺癌診療指南解讀
- 窗簾采購(gòu)?fù)稑?biāo)方案(技術(shù)方案)
- 電力安全工作規(guī)程考試試題(答案)
- 2024-2030年串番茄行業(yè)市場(chǎng)發(fā)展分析及前景趨勢(shì)與投資研究報(bào)告
評(píng)論
0/150
提交評(píng)論