廣西工程職業(yè)學(xué)院《機(jī)器學(xué)習(xí)理論(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廣西工程職業(yè)學(xué)院《機(jī)器學(xué)習(xí)理論(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廣西工程職業(yè)學(xué)院《機(jī)器學(xué)習(xí)理論(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
廣西工程職業(yè)學(xué)院《機(jī)器學(xué)習(xí)理論(雙語)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁廣西工程職業(yè)學(xué)院《機(jī)器學(xué)習(xí)理論(雙語)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在強(qiáng)化學(xué)習(xí)中,智能體通過與環(huán)境進(jìn)行交互來學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人需要在復(fù)雜的環(huán)境中找到通往目標(biāo)的最佳路徑,并且在途中會(huì)遇到各種障礙和獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合解決這個(gè)問題?()A.Q-learning算法,通過估計(jì)狀態(tài)-動(dòng)作值函數(shù)來選擇動(dòng)作B.SARSA算法,基于當(dāng)前策略進(jìn)行策略評(píng)估和改進(jìn)C.策略梯度算法,直接優(yōu)化策略的參數(shù)D.以上算法都不適合,需要使用專門的路徑規(guī)劃算法2、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加快訓(xùn)練速度B.防止過擬合C.提高模型精度D.以上都是3、在一個(gè)情感分析任務(wù)中,需要同時(shí)考慮文本的語義和語法信息。以下哪種模型結(jié)構(gòu)可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠提取局部特征,但對(duì)序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),擅長處理序列數(shù)據(jù),但長期依賴問題較嚴(yán)重C.長短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長期記憶能力,但計(jì)算復(fù)雜度較高D.結(jié)合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢4、在一個(gè)強(qiáng)化學(xué)習(xí)場景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過于傾向于探索,可能會(huì)導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗(yàn),可能會(huì)錯(cuò)過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)5、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化6、在一個(gè)多標(biāo)簽分類問題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類別。例如,一篇文章可能同時(shí)涉及科技、娛樂和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類任務(wù)?()A.將多標(biāo)簽問題轉(zhuǎn)化為多個(gè)二分類問題,分別進(jìn)行預(yù)測B.使用一個(gè)單一的分類器,輸出多個(gè)概率值表示屬于各個(gè)類別的可能性C.對(duì)每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類器D.以上方法都不可行,多標(biāo)簽分類問題無法通過機(jī)器學(xué)習(xí)解決7、機(jī)器學(xué)習(xí)中,批量歸一化(BatchNormalization)通常應(yīng)用于()A.輸入層B.隱藏層C.輸出層D.以上都可以8、在機(jī)器學(xué)習(xí)中,交叉驗(yàn)證是一種常用的評(píng)估模型性能和選擇超參數(shù)的方法。假設(shè)我們正在使用K折交叉驗(yàn)證來評(píng)估一個(gè)分類模型。以下關(guān)于交叉驗(yàn)證的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.將數(shù)據(jù)集隨機(jī)分成K個(gè)大小相等的子集,依次選擇其中一個(gè)子集作為測試集,其余子集作為訓(xùn)練集B.通過計(jì)算K次實(shí)驗(yàn)的平均準(zhǔn)確率等指標(biāo)來評(píng)估模型的性能C.可以在交叉驗(yàn)證過程中同時(shí)調(diào)整多個(gè)超參數(shù),找到最優(yōu)的超參數(shù)組合D.交叉驗(yàn)證只適用于小數(shù)據(jù)集,對(duì)于大數(shù)據(jù)集計(jì)算成本過高,不適用9、在一個(gè)分類問題中,如果類別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹C.樸素貝葉斯D.隨機(jī)森林10、在自然語言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是11、在一個(gè)無監(jiān)督學(xué)習(xí)問題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結(jié)構(gòu)。如果數(shù)據(jù)具有層次結(jié)構(gòu),以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對(duì)抗網(wǎng)絡(luò)(GAN)C.層次聚類D.以上方法都可以12、在進(jìn)行模型選擇時(shí),除了考慮模型的性能指標(biāo),還需要考慮模型的復(fù)雜度和可解釋性。假設(shè)我們有多個(gè)候選模型。以下關(guān)于模型選擇的描述,哪一項(xiàng)是不正確的?()A.復(fù)雜的模型通常具有更高的擬合能力,但也更容易過擬合B.簡單的模型雖然擬合能力有限,但更容易解釋和理解C.對(duì)于一些對(duì)可解釋性要求較高的任務(wù),如醫(yī)療診斷,應(yīng)優(yōu)先選擇復(fù)雜的黑盒模型D.在實(shí)際應(yīng)用中,需要根據(jù)具體問題和需求綜合權(quán)衡模型的性能、復(fù)雜度和可解釋性13、在一個(gè)強(qiáng)化學(xué)習(xí)問題中,智能體需要在環(huán)境中通過不斷嘗試和學(xué)習(xí)來優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動(dòng)作空間,以下哪種算法通常被用于解決這類問題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法14、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會(huì)使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過對(duì)模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對(duì)模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好15、假設(shè)正在進(jìn)行一項(xiàng)時(shí)間序列預(yù)測任務(wù),例如預(yù)測股票價(jià)格的走勢。在選擇合適的模型時(shí),需要考慮時(shí)間序列的特點(diǎn),如趨勢、季節(jié)性和噪聲等。以下哪種模型在處理時(shí)間序列數(shù)據(jù)時(shí)具有較強(qiáng)的能力?()A.線性回歸模型,簡單直接,易于解釋B.決策樹模型,能夠處理非線性關(guān)系C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),能夠捕捉時(shí)間序列中的長期依賴關(guān)系D.支持向量回歸(SVR),對(duì)小樣本數(shù)據(jù)效果較好16、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測問題,數(shù)據(jù)具有季節(jié)性和趨勢性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以17、想象一個(gè)語音識(shí)別的系統(tǒng)開發(fā),需要將輸入的語音轉(zhuǎn)換為文字。語音數(shù)據(jù)具有連續(xù)性、變異性和噪聲等特點(diǎn)。以下哪種模型架構(gòu)和訓(xùn)練方法可能是最有效的?()A.隱馬爾可夫模型(HMM)結(jié)合高斯混合模型(GMM),傳統(tǒng)方法,對(duì)短語音處理較好,但對(duì)復(fù)雜語音的適應(yīng)性有限B.深度神經(jīng)網(wǎng)絡(luò)-隱馬爾可夫模型(DNN-HMM),結(jié)合了DNN的特征學(xué)習(xí)能力和HMM的時(shí)序建模能力,但訓(xùn)練難度較大C.端到端的卷積神經(jīng)網(wǎng)絡(luò)(CNN)語音識(shí)別模型,直接從語音到文字,減少中間步驟,但對(duì)長語音的處理可能不夠靈活D.基于Transformer架構(gòu)的語音識(shí)別模型,利用自注意力機(jī)制捕捉長距離依賴,性能優(yōu)秀,但計(jì)算資源需求大18、假設(shè)我們有一個(gè)時(shí)間序列數(shù)據(jù),想要預(yù)測未來的值。以下哪種機(jī)器學(xué)習(xí)算法可能不太適合()A.線性回歸B.長短期記憶網(wǎng)絡(luò)(LSTM)C.隨機(jī)森林D.自回歸移動(dòng)平均模型(ARMA)19、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝?yàn)證技術(shù)來評(píng)估不同模型和超參數(shù)組合的性能。假設(shè)有一個(gè)分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗(yàn)證,以下關(guān)于K的選擇,哪一項(xiàng)是不太合理的?()A.K=5,平衡計(jì)算成本和評(píng)估準(zhǔn)確性B.K=2,快速得到初步的評(píng)估結(jié)果C.K=10,提供更可靠的評(píng)估D.K=n(n為樣本數(shù)量),確保每個(gè)樣本都用于驗(yàn)證一次20、在一個(gè)深度學(xué)習(xí)模型的訓(xùn)練過程中,出現(xiàn)了梯度消失的問題。以下哪種方法可以嘗試解決這個(gè)問題?()A.使用ReLU激活函數(shù)B.增加網(wǎng)絡(luò)層數(shù)C.減小學(xué)習(xí)率D.以上方法都可能有效21、在一個(gè)異常檢測問題中,例如檢測網(wǎng)絡(luò)中的異常流量,數(shù)據(jù)通常呈現(xiàn)出正常樣本遠(yuǎn)遠(yuǎn)多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學(xué)習(xí)算法,可能會(huì)因?yàn)閿?shù)據(jù)不平衡而導(dǎo)致模型對(duì)異常樣本的檢測能力不足。以下哪種方法更適合解決這類異常檢測問題?()A.構(gòu)建一個(gè)二分類模型,將數(shù)據(jù)分為正常和異常兩類B.使用無監(jiān)督學(xué)習(xí)算法,如基于密度的聚類算法,識(shí)別異常點(diǎn)C.對(duì)數(shù)據(jù)進(jìn)行平衡處理,如復(fù)制異常樣本,使正常和異常樣本數(shù)量相等D.以上方法都不適合,異常檢測問題無法通過機(jī)器學(xué)習(xí)解決22、在一個(gè)圖像分類任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測,以下哪種輕量級(jí)模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG23、在一個(gè)強(qiáng)化學(xué)習(xí)問題中,如果環(huán)境的狀態(tài)空間非常大,以下哪種技術(shù)可以用于有效地表示和處理狀態(tài)?()A.函數(shù)逼近B.狀態(tài)聚類C.狀態(tài)抽象D.以上技術(shù)都可以24、在一個(gè)異常檢測任務(wù)中,如果異常樣本的特征與正常樣本有很大的不同,以下哪種方法可能效果較好?()A.基于距離的方法,如K近鄰B.基于密度的方法,如DBSCANC.基于聚類的方法,如K-MeansD.以上都不行25、在一個(gè)圖像生成任務(wù)中,例如生成逼真的人臉圖像,生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的方法。GAN由生成器和判別器組成,它們在訓(xùn)練過程中相互對(duì)抗。以下關(guān)于GAN訓(xùn)練過程的描述,哪一項(xiàng)是不正確的?()A.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器B.判別器的目標(biāo)是準(zhǔn)確區(qū)分真實(shí)圖像和生成器生成的圖像C.訓(xùn)練初期,生成器和判別器的性能都比較差,生成的圖像質(zhì)量較低D.隨著訓(xùn)練的進(jìn)行,判別器的性能逐漸下降,而生成器的性能不斷提升二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)機(jī)器學(xué)習(xí)在康復(fù)醫(yī)學(xué)中的作用有哪些?2、(本題5分)解釋對(duì)抗樣本對(duì)機(jī)器學(xué)習(xí)模型的威脅。3、(本題5分)簡述機(jī)器學(xué)習(xí)在管理學(xué)中的決策支持。4、(本題5分)什么是因果推斷在機(jī)器學(xué)習(xí)中的應(yīng)用?三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)使用梯度提升樹(GBDT)模型預(yù)測學(xué)生的考試成績,分析影響成績的因素。2、(本題5分)借助機(jī)器翻譯模型將一段英文文本翻譯成中文,并評(píng)估翻譯質(zhì)量。3、(本題5分)運(yùn)用梯度提升樹預(yù)測電力市場的價(jià)格。4、(本題5分)通過經(jīng)濟(jì)學(xué)數(shù)據(jù)構(gòu)建經(jīng)濟(jì)預(yù)測模型。5、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論