版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省安溪一中2022-2023學年招生全國統(tǒng)一考試高考模擬調研卷數(shù)學試題(三)注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.2.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.3.已知復數(shù)z滿足(其中i為虛數(shù)單位),則復數(shù)z的虛部是()A. B.1 C. D.i4.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.255.已知函數(shù),,且在上是單調函數(shù),則下列說法正確的是()A. B.C.函數(shù)在上單調遞減 D.函數(shù)的圖像關于點對稱6.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.7.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員?面向全社會的優(yōu)質平臺,現(xiàn)日益成為老百姓了解國家動態(tài)?緊跟時代脈搏的熱門?該款軟件主要設有“閱讀文章”?“視聽學習”兩個學習模塊和“每日答題”?“每周答題”?“專項答題”?“挑戰(zhàn)答題”四個答題模塊?某人在學習過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學習方法有()A.60 B.192 C.240 D.4328.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.9.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.210.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.11.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.312.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知全集,集合,則______.14.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實驗表明,該藥物釋放量與時間的函數(shù)關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過______分鐘人方可進入房間.15.如果復數(shù)滿足,那么______(為虛數(shù)單位).16.已知實數(shù),滿足,則目標函數(shù)的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.18.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調遞增區(qū)間;(2)已知,若,,,求的面積.19.(12分)如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數(shù)m,都有,并證明你的結論.20.(12分)在本題中,我們把具體如下性質的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).21.(12分)為了實現(xiàn)中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現(xiàn)代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產(chǎn)量,積極開展技術創(chuàng)新活動.該農(nóng)場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負責人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗,認為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.22.(10分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.2.A【解析】
根據(jù)向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.3.A【解析】
由虛數(shù)單位i的運算性質可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質、復數(shù)的概念,屬于基礎題.4.D【解析】
由公差d=-2可知數(shù)列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.5.B【解析】
根據(jù)函數(shù),在上是單調函數(shù),確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據(jù)正弦函數(shù)的單調性判斷.D.計算是否為0.【詳解】因為函數(shù),在上是單調函數(shù),所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數(shù),在上是單調遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數(shù)的性質及其應用,還考查了運算求解的能力,屬于較難的題.6.A【解析】
根據(jù)復數(shù)的乘法運算法則化簡可得,根據(jù)純虛數(shù)的概念可得結果.【詳解】由題可知原式為,該復數(shù)為純虛數(shù),所以.故選:A【點睛】本題考查復數(shù)的運算和復數(shù)的分類,屬基礎題.7.C【解析】
四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【點睛】本題考查排列組合的應用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.8.A【解析】
分段求解函數(shù)零點,數(shù)形結合,分類討論即可求得結果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.9.C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎題.10.B【解析】
求導函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導數(shù)為,令,則或,上單調遞減,上單調遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應用導數(shù)研究函數(shù)圖象的走向,利用數(shù)形結合思想,轉化為函數(shù)圖象間交點個數(shù)的問題,難度不大.11.B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎題.12.B【解析】
由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質的應用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意可得出,然后進行補集的運算即可.【詳解】根據(jù)題意知,,,,.故答案為:.【點睛】本題考查列舉法的定義、全集的定義、補集的運算,考查計算能力,屬于基礎題.14.240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數(shù)的應用,屬于中檔題.15.【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,然后利用復數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)的模的求法,屬于基礎題.16.-1【解析】
作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.【詳解】作出實數(shù)x,y滿足對應的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線yx,由圖象可知當直線yx經(jīng)過點A時,直線yx的縱截距最小,此時z最?。?,得A(﹣1,﹣1),此時z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當時,求得函數(shù)的導函數(shù)以及二階導函數(shù),由此求得的單調區(qū)間.(2)令求得,構造函數(shù),利用導數(shù)求得的單調區(qū)間、極值和最值,結合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個極值點,所以不妨設,得,因為在遞減,且,所以又所以【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調區(qū)間,考查利用導數(shù)研究函數(shù)的極值點,考查利用導數(shù)證明不等式,考查化歸與轉化的數(shù)學思想方法,屬于難題.18.(1)最小正周期為,單調遞增區(qū)間為;(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數(shù)的周期和單調區(qū)間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.19.(1);(2)存在,Q為線段中點【解析】
解法一:(1)作出平面與平面的交線,可證平面,計算,,得出,從而得出的大??;(2)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設上存在一定點Q,設此點的橫坐標為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設與平面的公共點為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點,,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當Q為線段中點時,對于任意的實數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標系,則,,所以,,,又由,,則為平面的一個法向量,設直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設此點的橫坐標為,則,,依題意,對于任意的實數(shù)要使,等價于,即,解得,即當Q為線段中點時,對于任意的實數(shù),都有.【點睛】本題考查了線面垂直的判定定理、線面角的計算,考查了空間向量在立體幾何中的應用,屬于中檔題.20.(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調,建立方程求解;(2)依據(jù)新定義,討論的單調性,列出方程求解即可?!驹斀狻浚?)當時,由復合函數(shù)單調性知,在區(qū)間上是增函數(shù),即有,解得;同理,當時,有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調函數(shù),①當在上是單調增函數(shù),則,解得,檢驗符合;②當在上是單調減函數(shù),則,解得,在上不是單調函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有?!军c睛】本題主要考查學生的應用意識,利用所學知識分析解決新定義問題。21.(1)見解析;(2)(i)該農(nóng)場若采用延長光照時間的方法,預計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預計每年的利潤為424千元;(3)分布列見解析,.【解析】
(1)估計第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選擇.(2)對于兩種方法,先計算出每畝平均產(chǎn)量,再算農(nóng)場一年的利潤.(3)估計頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應的概率,寫出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保廢棄物處理服務合同
- 2025年度航空航天研發(fā)設備采購合同解除書3篇
- 2025年度空運貨物出口運輸與國際航空運輸協(xié)會會員服務協(xié)議3篇
- 2024貿促會指定下載專區(qū)計算機硬件買賣合同3篇
- 一宅一物金銀銅專屬定制配送合同版
- 2024智能無人機研發(fā)與銷售服務合同
- 2024無房產(chǎn)離婚協(xié)議書制作指南與注意事項3篇
- 2025年度鏟車租賃與設備租賃組合服務合同2篇
- 手衛(wèi)生相關知識培訓課件
- 2024微信小程序用戶體驗設計服務合同3篇
- 魯教版七年級數(shù)學下冊(五四制)全冊完整課件
- 患者突發(fā)昏迷應急預案演練腳本-
- 智能機器人技術導論PPT完整全套教學課件
- 危險性較大的分部分項工程清單 及安全管理措施
- 中職英語語文版(2023)基礎模塊1 Unit 1 The Joys of Vocational School 單元測試題(含答案)
- 最全-房屋市政工程安全生產(chǎn)標準化指導圖冊
- 算法向善與個性化推薦發(fā)展研究報告
- 聚合物的流變性詳解演示文稿
- 電氣設備預防性試驗安全技術措施
- 壓力彈簧力度計算器及計算公式
- 內科學教學課件:免疫性血小板減少癥(ITP)
評論
0/150
提交評論