2025年蘇人新版高一數(shù)學上冊階段測試試卷含答案_第1頁
2025年蘇人新版高一數(shù)學上冊階段測試試卷含答案_第2頁
2025年蘇人新版高一數(shù)學上冊階段測試試卷含答案_第3頁
2025年蘇人新版高一數(shù)學上冊階段測試試卷含答案_第4頁
2025年蘇人新版高一數(shù)學上冊階段測試試卷含答案_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年蘇人新版高一數(shù)學上冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共9題,共18分)1、若函數(shù)y=的定義域為R;則它的圖象可能經(jīng)過的點是()

A.(0,)

B.(1;1)

C.(2;2)

D.(-2)

2、如圖下面的四個容器高度都相同,將水從容器頂部一個孔中以相同的速度注入其中,注滿為止。用下面對應(yīng)的圖象顯示該容器中水面的高度和時間之間的關(guān)系,其中不正確的有()A.1個B.2個C.3個D.4個3、【題文】設(shè)直線m與平面α相交但不垂直,則下列說法中正確的是()A.在平面α內(nèi)有且只有一條直線與直線m垂直B.過直線m有且只有一個平面與平面α垂直C.與直線m垂直的直線不可能與平面α平行D.與直線m平行的平面不可能與平面α垂直4、【題文】直線與曲線C:有交點,則的取值范圍是()A.B.C.D.但5、【題文】已知ω>0,直線和是函數(shù)f(x)=sin(ωx+φ)圖像的兩條相鄰的對稱軸,則φ=A.B.C.D.6、【題文】如右圖,已知一個錐體的正(主)視圖,側(cè)(左)視圖和俯視圖均為直角三角形,且面積分別為3,4,6,則該錐體的體積為A.B.C.D.7、【題文】:一個長方體去掉一個小長方體;所得幾何體的正(主)視圖與側(cè)(左)視圖分別如右圖所示,則該幾何體的俯視圖為。

8、下列給出的幾個關(guān)系式中:①{?}?{a,b},②{(a,b)}={a,b},③{a,b}?{b,a},④??{0}中,正確的有()A.0個B.1個C.2個D.3個9、已知公差不為零的等差數(shù)列{an},若a5,a9,a15成等比數(shù)列,則等于()A.B.C.D.評卷人得分二、填空題(共5題,共10分)10、【題文】函數(shù)的定義域是_____.11、【題文】已知則_____________.12、求值:log23?log57?log35?log74=____13、已知f(2x﹣3)=x2+x+1,求f(x)=____14、在平面直角坐標系中,角α終邊過點P(2,1),則cos2α+sin2α的值為____.評卷人得分三、證明題(共6題,共12分)15、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.16、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.17、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.18、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.19、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.20、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.評卷人得分四、解答題(共1題,共9分)21、設(shè).(1)在下列直角坐標系中畫出的圖像;(2)若求值;(3)用單調(diào)性定義證明函數(shù)在時單調(diào)遞增.評卷人得分五、計算題(共2題,共10分)22、如圖,AB是⊙O的直徑,過圓上一點D作⊙O的切線DE,與過點A的直線垂直于E,弦BD的延長線與直線AE交于C點.

(1)求證:點D為BC的中點;

(2)設(shè)直線EA與⊙O的另一交點為F,求證:CA2-AF2=4CE?EA;

(3)若弧AD=弧DB,⊙O的半徑為r.求由線段DE,AE和弧AD所圍成的陰影部分的面積.23、某校一間宿舍里住有若干位學生,其中一人擔任舍長.元旦時,該宿舍里的每位學生互贈一張賀卡,并且每人又贈給宿舍樓的每位管理員一張賀卡,每位宿舍管理員也回贈舍長一張賀卡,這樣共用去了51張賀卡.問這間宿舍里住有多少位學生.評卷人得分六、綜合題(共4題,共20分)24、如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經(jīng)過x軸上A;B兩點.

(1)求A;B,C三點的坐標;

(2)求經(jīng)過A,B,C三點的拋物線的解析式.25、已知:甲;乙兩車分別從相距300(km)的M、N兩地同時出發(fā)相向而行;其中甲到達N地后立即返回,圖1、圖2分別是它們離各自出發(fā)地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象.

(1)試求線段AB所對應(yīng)的函數(shù)關(guān)系式;并寫出自變量的取值范圍;

(2)當它們行駛到與各自出發(fā)地距離相等時,用了(h);求乙車的速度;

(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.26、先閱讀下面的材料再完成下列各題

我們知道,若二次函數(shù)y=ax2+bx+c對任意的實數(shù)x都有y≥0,則必有a>0,△=b2-4ac≤0;例如y=x2+2x+1=(x+1)2≥0,則△=b2-4ac=0,y=x2+2x+2=(x+1)2+1>0,則△=b2-4ac<0.

(1)求證:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2

(2)若x+2y+3z=6,求x2+y2+z2的最小值;

(3)若2x2+y2+z2=2;求x+y+z的最大值;

(4)指出(2)中x2+y2+z2取最小值時,x,y,z的值(直接寫出答案).27、已知平面區(qū)域上;坐標x,y滿足|x|+|y|≤1

(1)畫出滿足條件的區(qū)域L0;并求出面積S;

(2)對區(qū)域L0作一個內(nèi)切圓M1,然后在M1內(nèi)作一個內(nèi)接與此圓與L0相同形狀的圖形L1,在L1內(nèi)繼續(xù)作圓M2;經(jīng)過無數(shù)次后,求所有圓的面積的和.

(提示公式:)參考答案一、選擇題(共9題,共18分)1、A【分析】

因為函數(shù)y=的定義域為R,所以m?3x-1+1≠0.

所以m≥0,若x=0,則由得m=9.

若x=1,則由此時方程無解.

若x=2,則由解得m=-1.不滿足條件.

若x=則由解此時方程無解.

故選A.

【解析】【答案】利用函數(shù)的定義域為R;則說明分母不等于0,可得m的取值范圍.

2、A【分析】【解析】

A、因正方體的底面積是定值,故水面高度的增加是均勻的,即圖象是直線型的,故A不對;B、因幾何體下面窄上面寬,且相同的時間內(nèi)注入的水量相同,所以下面的高度增加的快,上面增加的慢,即圖象應(yīng)越來越平緩,故B正確;C、球是個對稱的幾何體,下半球因下面窄上面寬,所以水的高度增加的越來越慢;上半球恰相反,所以水的高度增加的越來越快,則圖象先平緩再變陡;故C正確;D、圖中幾何體兩頭寬、中間窄,所以水的高度增加的越來越慢后再越來越慢快,則圖象先平緩再變陡,故D正確.故選A.【解析】【答案】A3、B【分析】【解析】可以通過觀察正方體ABCD-A1B1C1D1進行判斷,取BC1為直線m,平面ABCD為平面α,由AB,CD均與m垂直知,選項A錯;由D1C1與m垂直且與α平行知,選項C錯;由平面ADD1A1與m平行且與α垂直知,選項D錯.故選B.【解析】【答案】B4、A【分析】【解析】

試題分析:由曲線C:兩邊同時乘以可得:化為直角坐標方程得:即所以曲線C是以(1,0)為圓心,1為半徑的圓;由直線與曲線C有交點得到:解得:故選A.

考點:1.曲線極坐標方程與直角坐標方程的互化;2.直線與圓的位置關(guān)系.【解析】【答案】A5、A【分析】【解析】因為和是函數(shù)圖象中相鄰的對稱軸,所以即又所以所以因為是函數(shù)的對稱軸所以所以因為所以檢驗知此時也為對稱軸,所以選A.【解析】【答案】A6、D【分析】【解析】略【解析】【答案】D7、C【分析】【解析】:很容易看出這是一個面向我們的左上角缺了一小塊長方體的圖形,不難選出答案?!窘馕觥俊敬鸢浮浚篊.8、C【分析】解:由題意;①{?}表示集合中的元素為?,故不正確;

②{(a,b)}的元素表示一個點,坐標為(a,b),{a,b}表示集合中有兩個元素a,b;故不正確;

③∵{a,b}={b,a},∴{a,b}?{b;a},故正確;

④?是任何集合的子集;故??{0}正確。

從而正確的有2個。

故選C.

①{?}表示集合中的元素為?;②{(a,b)}的元素表示一個點,坐標為(a,b),{a,b}表示集合中有兩個元素a,b;③{a,b}={b;a};④?是任何集合的子集,故可判斷正確與否.

本題以集合為載體,考查集合的概念,考查集合之間的關(guān)系,屬于基礎(chǔ)題.【解析】【答案】C9、D【分析】解:設(shè)等差數(shù)列{an}的公差為d(d≠0);

由a5,a9,a15成等比數(shù)列,得

∴a9=12d.

則a15=a9+6d=12d+6d=18d.

∴=.

故選:D.

設(shè)出等差數(shù)列的公差,由a5,a9,a15成等比數(shù)列得到a9和公差的關(guān)系,則的值可求.

本題考查等差數(shù)列的通項公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.【解析】【答案】D二、填空題(共5題,共10分)10、略

【分析】【解析】

試題分析:由已知得解得函數(shù)定義域為

考點:本題主要考查對數(shù)函數(shù)性質(zhì);函數(shù)定義域求法。

點評:基礎(chǔ)題,求函數(shù)定義域,要考慮偶次根式,被開方數(shù)非負;對數(shù)的真數(shù)大于0等?!窘馕觥俊敬鸢浮?1、略

【分析】【解析】解:因為A=結(jié)合數(shù)軸標根法得到結(jié)論為【解析】【答案】12、2【分析】【解答】解:log23?log57?log35?log74==2;

故答案為:2.

【分析】根據(jù)換底公式,即可得到答案.13、【分析】【解答】解:f(2x﹣3)=x2+x+1;

設(shè)t=2x﹣3,則x=(t+3);

那么:函數(shù)f(2x﹣3)=x2+x+1轉(zhuǎn)化為g(t)=

整理得:g(t)=

故得f(x)=

故答案為:f(x)=.

【分析】利用換元法求解即可.14、【分析】【解答】解:∵平面直角坐標系中,角α終邊過點P(2,1),∴x=2,y=1,r=|OP|=∴cosα===sinα===則cos2α+sin2α=+2sinαcosα=+=

故答案為:.

【分析】由條件利用任意角的三角函數(shù)的定義,求得cosα、sinα的值,從而求得cos2α+sin2α的值.三、證明題(共6題,共12分)15、略

【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.16、略

【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.17、略

【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;

(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F為AC中點;

∴cosC==.

答:cosC的值是.

(3)BF過圓心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.18、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點;

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.19、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.20、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點;

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.四、解答題(共1題,共9分)21、略

【分析】試題分析:(1)根據(jù)分段函數(shù)的特點,在每一段區(qū)間上畫出相應(yīng)的圖象即可;(2)結(jié)合圖象可知代入第二段函數(shù)解析式進行求解,即可求出的值;(3)設(shè)然后將與代入通過判定的符號,確定函數(shù)的單調(diào)性.試題解析:(1)如圖.(2)由函數(shù)的圖象可得:即且∴.(3)設(shè)則=時單調(diào)遞增.考點:1、函數(shù)的圖象畫法;2、函數(shù)單調(diào)性的判斷與證明;3、分段函數(shù)求值.【解析】【答案】(1)圖見解析;(2)(3)證明見解析.五、計算題(共2題,共10分)22、略

【分析】【分析】(1)連接OD;ED為⊙O切線;由切線的性質(zhì)知:OD⊥DE;根據(jù)垂直于同一直線的兩條直線平行知:OD∥AC;由于O為AB中點,則點D為BC中點.

(2)連接BF;AB為⊙O直徑,根據(jù)直徑對的圓周角是直角知,∠CFB=∠CED=90°,根據(jù)垂直于同一直線的兩條直線平行知

ED∥BF由平行線的性質(zhì)知,由于點D為BC中點,則點E為CF中點,所以CA2-AF2=(CA-AF)(CA+AF)=(CE+AE-EF+AE)?CF=2AE?CF;將CF=2CE代入即可得出所求的結(jié)論.

(3)由于則弧AD是半圓ADB的三分之一,有∠AOD=180°÷3=60°;連接DA,可知等腰三角形△OAD為等邊三角形,則有OD=AD=r;在Rt△DEA中,由弦切角定理知:∠EDA=∠B=30°,可求得EA=r,ED=r,則有S陰影=S梯形AODE-S扇形AOD,從而可求得陰影部分的面積.【解析】【解答】(1)證明:連接OD;

∵ED為⊙O切線;∴OD⊥DE;

∵DE⊥AC;∴OD∥AC;

∵O為AB中點;

∴D為BC中點;

(2)證明:連接BF;

∵AB為⊙O直徑;

∴∠CFB=∠CED=90°;

∴ED∥BF;

∵D為BC中點;

∴E為CF中點;

∴CA2-AF2=(CA-AF)(CA+AF)

=(CE+AE-EF+AE)?CF=2AE?CF;

∴CA2-AF2=4CE?AE;

(3)解:∵,

∴∠AOD=60°;

連接DA;可知△OAD為等邊三角形;

∴OD=AD=r;

在Rt△DEA中;∠EDA=30°;

∴EA=r,ED=r;

∴S陰影=S梯形AODE-S扇形AOD=

=.23、略

【分析】【分析】設(shè)有x個學生;y個管理員.

①該宿舍每位學生與贈一張賀卡;那么每個人收到的賀卡就是x-1張,那么總共就用去了x(x-1)(乘法原理)張賀卡;

②每個人又贈給每一位管理員一張賀卡;那么就用去了xy(乘法原理)張賀卡;

③每位管理員也回贈舍長一張賀卡;那么就用去了y張賀卡;

所以根據(jù)題意列出方程:x(x-1)+xy+y=51(加法原理),然后根據(jù)生活實際情況解方程即可.【解析】【解答】解:設(shè)有x個學生;y個管理員.

該宿舍每位學生與贈一張賀卡;那么每個人收到的賀卡就是x-1張,那么總共就用去了x(x-1)張賀卡;

每個人又贈給每一位管理員一張賀卡;那么就用去了xy張賀卡;

每位管理員也回贈舍長一張賀卡;那么就用去了y張賀卡;

∴x(x-1)+xy+y=51;

∴51=x(x-1)+xy+y=x(x-1)+y(x+1)≥x(x-1)+x+1=x2+1(當y=1時取“=”);

解得;x≤7;

x(x-1)+(x+1)y=51

∵51是奇數(shù);而x和x-1中,有一個是偶數(shù);

∴x(x-1)是偶數(shù);

∴(x+1)y是奇數(shù);

∴x是偶數(shù);

而x≤7;所以x只有246三種情況;

當x=2時,y=(不是整數(shù);舍去);

當x=4時,y=(不是整數(shù);舍去);

當x=6時;y=3.

所以這個宿舍有6個學生.六、綜合題(共4題,共20分)24、略

【分析】【分析】(1)過C作CE⊥AB于E;根據(jù)拋物線的對稱性知AE=BE;由于四邊形ABCD是菱形,易證得Rt△OAD≌Rt△EBC,則OA=AE=BE,可設(shè)菱形的邊長為2m,則AE=BE=1m,在Rt△BCE中,根據(jù)勾股定理即可求出m的值,由此可確定A;B、C三點的坐標;

(2)根據(jù)(1)題求得的三點坐標,用待定系數(shù)法即可求出拋物線的解析式.【解析】【解答】解:(1)由拋物線的對稱性可知AE=BE.

∴△AOD≌△BEC.

∴OA=EB=EA.

設(shè)菱形的邊長為2m;在Rt△AOD中;

m2+()2=(2m)2;解得m=1.

∴DC=2;OA=1,OB=3.

∴A,B,C三點的坐標分別為(1,0),(3,0),(2,).

(2)解法一:設(shè)拋物線的解析式為y=a(x-2)2+,代入A的坐標(1,0),得a=-.

∴拋物線的解析式為y=-(x-2)2+.

解法二:設(shè)這個拋物線的解析式為y=ax2+bx+c,由已知拋物線經(jīng)過A(1,0),B(3,0),C(2,)三點;

得解這個方程組,得

∴拋物線的解析式為y=-x2+4x-3.25、略

【分析】【分析】(1)首先設(shè)線段AB所表示的函數(shù)的解析式為y=kx+b,根據(jù)題意知道函數(shù)經(jīng)過(3,300),(;0)兩點,利用待定系數(shù)法即可確定函數(shù)的解析式和自變量的取值范圍;

(2)首先可以判定x=在3<x≤中,然后把x=代入(1)的函數(shù)解析式y(tǒng)=-80x+540中可以求出甲所走的路程;同時也知道了乙的路程,最后利用速度公式即可求解;

(3)首先確定依有兩次相遇,①當0≤x≤3時,100x+40x=300,②當3<x≤時,(540-80x)+40x=300,分別解這兩個方程即可求解.【解析】【解答】解:(1)設(shè)線段AB所表示的函數(shù)的解析式為y=kx+b;

把(3,300),(,0)代入其中得;

解之得;

∴線段AB所表示的函數(shù)解析式為y=-80x+540;

自變量的取值范圍為3<x≤;

(2)∵x=在3<x≤中;

∴把x=代入(1)的函數(shù)解析式y(tǒng)=-80x+540中;

得y甲=180;

∴乙車的速度為180÷=40km/h;

(3)依題意有兩次相遇;

①當0≤x≤3時;100x+40x=300;

∴x=;

②當3<x≤時;(540-80x)+40x=300;

∴x=6;

∴當它們行駛了小時和6小時時兩車相遇.26、略

【分析】【分析】(1)首先構(gòu)造二次函數(shù):f(x)=(a1x+b1)2+(a2x+b2)2++(anx+bn)2=(a12+a22++an2)x2+2(a1b1+a2b2++anbn)x+(b12+b22++bn2),由(a1x+b1)2+(a2x+b2)2++(anx+bn)2≥0,即可得f(x)≥0,可得△=4(a1b1+a2b2++anbn)2-4(a12+a22++an2)(b12+b22++bn2)≤0,整理即可證得:(a12+a22++an2)?(b12+b22++bn2)≥(a1?b1+a2?b2++an?bn)2;

(2)利用(1)可得:(1+4+9)(x2+y2+z2)≥(x+2y+3z)2;又由x+2y+3z=6,整理求解即可求得答案;

(3)利用(1)可得:(2x2+y2+z2)(+1+1)≥(x+y+z)2,又由2x2+y2+z2=2;整理求解即可求得答案;

(4)因為當且僅當==時等號成立,即可得當且僅當x==時,x2+y2+z2取最小值,又由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論