中國計(jì)量大學(xué)《機(jī)器學(xué)習(xí)算法與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
中國計(jì)量大學(xué)《機(jī)器學(xué)習(xí)算法與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
中國計(jì)量大學(xué)《機(jī)器學(xué)習(xí)算法與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
中國計(jì)量大學(xué)《機(jī)器學(xué)習(xí)算法與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
中國計(jì)量大學(xué)《機(jī)器學(xué)習(xí)算法與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁中國計(jì)量大學(xué)《機(jī)器學(xué)習(xí)算法與實(shí)踐》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個(gè)機(jī)器人要通過強(qiáng)化學(xué)習(xí)來學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎(jiǎng)勵(lì)或懲罰)來調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過估計(jì)狀態(tài)-動(dòng)作值來選擇最優(yōu)動(dòng)作C.策略梯度算法直接優(yōu)化策略函數(shù),通過計(jì)算策略的梯度來更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動(dòng)作就能找到最優(yōu)策略2、當(dāng)使用支持向量機(jī)(SVM)進(jìn)行分類任務(wù)時(shí),如果數(shù)據(jù)不是線性可分的,通常會(huì)采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法3、在進(jìn)行模型選擇時(shí),我們通常會(huì)使用交叉驗(yàn)證來評(píng)估不同模型的性能。如果在交叉驗(yàn)證中,某個(gè)模型的性能波動(dòng)較大,這可能意味著()A.模型不穩(wěn)定,需要進(jìn)一步調(diào)整B.數(shù)據(jù)存在問題C.交叉驗(yàn)證的設(shè)置不正確D.該模型不適合當(dāng)前任務(wù)4、在一個(gè)回歸問題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以5、特征工程是機(jī)器學(xué)習(xí)中的重要環(huán)節(jié)。以下關(guān)于特征工程的說法中,錯(cuò)誤的是:特征工程包括特征提取、特征選擇和特征轉(zhuǎn)換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關(guān)于特征工程的說法錯(cuò)誤的是()A.特征提取是從原始數(shù)據(jù)中自動(dòng)學(xué)習(xí)特征表示的過程B.特征選擇是從眾多特征中選擇出對(duì)模型性能有重要影響的特征C.特征轉(zhuǎn)換是將原始特征進(jìn)行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機(jī)器學(xué)習(xí)算法中需要,深度學(xué)習(xí)算法不需要進(jìn)行特征工程6、在一個(gè)文本生成任務(wù)中,例如生成詩歌或故事,以下哪種方法常用于生成自然語言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經(jīng)網(wǎng)絡(luò)的方法,如TransformerD.以上都不是7、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行無監(jiān)督學(xué)習(xí),以發(fā)現(xiàn)潛在的模式和結(jié)構(gòu)。以下哪種方法可能是首選?()A.自編碼器(Autoencoder),通過重構(gòu)輸入數(shù)據(jù)學(xué)習(xí)特征,但可能無法發(fā)現(xiàn)復(fù)雜模式B.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過對(duì)抗訓(xùn)練生成新數(shù)據(jù),但訓(xùn)練不穩(wěn)定C.深度信念網(wǎng)絡(luò)(DBN),能夠提取高層特征,但訓(xùn)練難度較大D.以上方法都可以嘗試,根據(jù)數(shù)據(jù)特點(diǎn)和任務(wù)需求選擇8、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以9、想象一個(gè)圖像分類的競(jìng)賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測(cè)結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高10、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力11、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)圖像中的物體進(jìn)行實(shí)例分割,除了常見的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以12、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)文本進(jìn)行情感分類,同時(shí)考慮文本的上下文信息和語義關(guān)系。以下哪種模型可以更好地處理這種情況?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與注意力機(jī)制的結(jié)合B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)與長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)的融合C.預(yù)訓(xùn)練語言模型(如BERT)微調(diào)D.以上模型都有可能13、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過對(duì)抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高14、在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識(shí)別等領(lǐng)域。假設(shè)我們正在設(shè)計(jì)一個(gè)CNN模型,對(duì)于圖像分類任務(wù),以下哪個(gè)因素對(duì)模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大15、在一個(gè)股票價(jià)格預(yù)測(cè)的場(chǎng)景中,需要根據(jù)歷史的股票價(jià)格、成交量、公司財(cái)務(wù)指標(biāo)等數(shù)據(jù)來預(yù)測(cè)未來的價(jià)格走勢(shì)。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點(diǎn)。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡(jiǎn)單直觀,但無法處理非線性關(guān)系B.支持向量回歸(SVR),對(duì)非線性數(shù)據(jù)有一定處理能力,但對(duì)高噪聲數(shù)據(jù)可能效果不佳C.隨機(jī)森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),對(duì)時(shí)間序列數(shù)據(jù)有較好的建模能力,但容易過擬合二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在哲學(xué)研究中的思考方式。2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在音樂學(xué)中的創(chuàng)作輔助。3、(本題5分)說明機(jī)器學(xué)習(xí)在化學(xué)材料研究中的作用。4、(本題5分)機(jī)器學(xué)習(xí)在農(nóng)業(yè)中的應(yīng)用有哪些方面?三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述機(jī)器學(xué)習(xí)中的主動(dòng)學(xué)習(xí)。解釋主動(dòng)學(xué)習(xí)的概念和原理,介紹常見的主動(dòng)學(xué)習(xí)方法。分析主動(dòng)學(xué)習(xí)在實(shí)際問題中的應(yīng)用及優(yōu)勢(shì)。2、(本題5分)分析機(jī)器學(xué)習(xí)中的決策樹集成算法,如隨機(jī)森林和梯度提升樹。討論其原理及在提高模型準(zhǔn)確性和穩(wěn)定性方面的作用。3、(本題5分)機(jī)器學(xué)習(xí)中的模型可解釋性方法有哪些?結(jié)合實(shí)際案例,分析如何提高模型的透明度和可理解性。4、(本題5分)闡述機(jī)器學(xué)習(xí)中的模型壓縮中的知識(shí)蒸餾方法。解釋知識(shí)蒸餾的原理,介紹其在模型壓縮中的應(yīng)用。分析知識(shí)蒸餾的優(yōu)勢(shì)及面臨的挑戰(zhàn)。5、(本題5分)分析深度學(xué)習(xí)中的生成對(duì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論