福建省莆田市仙游第一中學(xué)2023-2024學(xué)年高三2月模擬(自主測(cè)試)二數(shù)學(xué)試題_第1頁(yè)
福建省莆田市仙游第一中學(xué)2023-2024學(xué)年高三2月模擬(自主測(cè)試)二數(shù)學(xué)試題_第2頁(yè)
福建省莆田市仙游第一中學(xué)2023-2024學(xué)年高三2月模擬(自主測(cè)試)二數(shù)學(xué)試題_第3頁(yè)
福建省莆田市仙游第一中學(xué)2023-2024學(xué)年高三2月模擬(自主測(cè)試)二數(shù)學(xué)試題_第4頁(yè)
福建省莆田市仙游第一中學(xué)2023-2024學(xué)年高三2月模擬(自主測(cè)試)二數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省莆田市仙游第一中學(xué)2022-2023學(xué)年高三2月模擬(自主測(cè)試)二數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.2.已知雙曲線()的漸近線方程為,則()A. B. C. D.3.已知函數(shù)的圖象如圖所示,則下列說(shuō)法錯(cuò)誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對(duì)稱中心是D.函數(shù)的對(duì)稱軸是4.已知集合,,則()A. B. C. D.5.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn)(設(shè)點(diǎn)位于第一象限),過(guò)點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為點(diǎn),,拋物線的準(zhǔn)線交軸于點(diǎn),若,則直線的斜率為A.1 B. C. D.6.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c7.設(shè)等差數(shù)列的前n項(xiàng)和為,且,,則()A.9 B.12 C. D.8.如圖1,《九章算術(shù)》中記載了一個(gè)“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去本三尺,問(wèn)折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問(wèn)折斷處離地面的高為()尺.A. B. C. D.9.若,,,則下列結(jié)論正確的是()A. B. C. D.10.函數(shù)的圖象與函數(shù)的圖象的交點(diǎn)橫坐標(biāo)的和為()A. B. C. D.11.《九章算術(shù)》勾股章有一“引葭赴岸”問(wèn)題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問(wèn)水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参铮冻鏊鎯沙?,若把它引向岸邊,正好與岸邊齊,問(wèn)水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.12.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線的焦點(diǎn),是上一點(diǎn),的延長(zhǎng)線交軸于點(diǎn).若為的中點(diǎn),則_________.14.在中,已知,則的最小值是________.15.已知,,求____________.16.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知都是各項(xiàng)不為零的數(shù)列,且滿足其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項(xiàng)公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對(duì)任意的恒成立.18.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.19.(12分)已知函數(shù),的最大值為.求實(shí)數(shù)b的值;當(dāng)時(shí),討論函數(shù)的單調(diào)性;當(dāng)時(shí),令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域?yàn)椋咳舸嬖?,求?shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.20.(12分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長(zhǎng).21.(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.22.(10分)已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)在上存在零點(diǎn).求實(shí)數(shù)的取值范圍;若存在實(shí)數(shù),當(dāng)時(shí),函數(shù)在時(shí)取得最大值,求正實(shí)數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實(shí)數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

利用線線、線面、面面相應(yīng)的判定與性質(zhì)來(lái)解決.【詳解】如果兩條平行線中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)?,所以,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.2.A【解析】

根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3.B【解析】

根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對(duì)稱性逐項(xiàng)判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點(diǎn)代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時(shí),函數(shù)在上單調(diào)遞增,故B錯(cuò)誤;令,得,故函數(shù)的對(duì)稱中心是,故C正確;令,得,故函數(shù)的對(duì)稱軸是,故D正確.故選:B.【點(diǎn)睛】本題考查由圖象求余弦型函數(shù)的解析式,同時(shí)也考查了余弦型函數(shù)的單調(diào)性與對(duì)稱性的判斷,考查推理能力與計(jì)算能力,屬于中等題.4.D【解析】

先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道容易題.5.C【解析】

根據(jù)拋物線定義,可得,,又,所以,所以,設(shè),則,則,所以,所以直線的斜率.故選C.6.A【解析】

利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點(diǎn)睛】本題考查三個(gè)數(shù)的大小的判斷,考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7.A【解析】

由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查學(xué)生運(yùn)算求解能力,是一道基礎(chǔ)題.8.B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.9.D【解析】

根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點(diǎn)睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.10.B【解析】

根據(jù)兩個(gè)函數(shù)相等,求出所有交點(diǎn)的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點(diǎn)的橫坐標(biāo)的和,故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算的核心素養(yǎng).11.C【解析】

由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.12.C【解析】

根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯(cuò)誤,為偶函數(shù),故錯(cuò)誤,是奇函數(shù),故正確.為偶函數(shù),故錯(cuò)誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意可得,又由于為的中點(diǎn),且點(diǎn)在軸上,所以可得點(diǎn)的橫坐標(biāo),代入拋物線方程中可求點(diǎn)的縱坐標(biāo),從而可求出點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式可求得結(jié)果.【詳解】解:因?yàn)槭菕佄锞€的焦點(diǎn),所以,設(shè)點(diǎn)的坐標(biāo)為,因?yàn)闉榈闹悬c(diǎn),而點(diǎn)的橫坐標(biāo)為0,所以,所以,解得,所以點(diǎn)的坐標(biāo)為所以,故答案為:【點(diǎn)睛】此題考查拋物線的性質(zhì),中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.14.【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時(shí)取到等號(hào),故cosC的最小值為.點(diǎn)睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運(yùn)用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.15.【解析】

求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可計(jì)算出結(jié)果.【詳解】,,,因此,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.16.【解析】由圖可知,當(dāng)直線y=kx在直線OA與x軸(不含它們)之間時(shí),y=kx與y=f(x)的圖像有兩個(gè)不同交點(diǎn),即方程有兩個(gè)不相同的實(shí)根.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)詳見解析;(3)詳見解析.【解析】

(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項(xiàng)與前項(xiàng)和的關(guān)系求解即可.(2)取,并結(jié)合通項(xiàng)與前項(xiàng)和的關(guān)系可求得再根據(jù)化簡(jiǎn)可得,代入化簡(jiǎn)即可知,再證明也成立即可.(3)由(2)當(dāng)時(shí),,代入所給的條件化簡(jiǎn)可得,進(jìn)而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:.是各項(xiàng)不為零的常數(shù)列,則,則由,及得,當(dāng)時(shí),,兩式作差,可得.當(dāng)時(shí),滿足上式,則;證明:,當(dāng)時(shí),,兩式相減得:即.即.又,,即.當(dāng)時(shí),,兩式相減得:.?dāng)?shù)列從第二項(xiàng)起是公差為的等差數(shù)列.又當(dāng)時(shí),由得,當(dāng)時(shí),由,得.故數(shù)列是公差為的等差數(shù)列;證明:由,當(dāng)時(shí),,即,,,即,即,當(dāng)時(shí),即.故從第二項(xiàng)起數(shù)列是等比數(shù)列,當(dāng)時(shí),..另外,由已知條件可得,又,,因而.令,則.故對(duì)任意的恒成立.【點(diǎn)睛】本題主要考查了等差等比數(shù)列的綜合運(yùn)用,需要熟練運(yùn)用通項(xiàng)與前項(xiàng)和的關(guān)系分析數(shù)列的遞推公式繼而求解通項(xiàng)公式或證明等差數(shù)列等.同時(shí)也考查了數(shù)列中的不等式證明等,需要根據(jù)題意分析數(shù)列為等比數(shù)列并求出通項(xiàng),再利用作商法證明.屬于難題.18.(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進(jìn)而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因?yàn)?,所以,由正弦定理,得.又因?yàn)椋?,所以.又因?yàn)椋裕↖I)由,得,由余弦定理,得,即,因?yàn)?,解?因?yàn)椋?19.(1);(2)時(shí),在單調(diào)增;時(shí),在單調(diào)遞減,在單調(diào)遞增;時(shí),同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問(wèn)題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,進(jìn)而可得結(jié)果.詳解:(1)由題意得,令,解得,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減.所以當(dāng)時(shí),取得極大值,也是最大值,所以,解得.(2)的定義域?yàn)?①即,則,故在單調(diào)增②若,而,故,則當(dāng)時(shí),;當(dāng)及時(shí),故在單調(diào)遞減,在單調(diào)遞增.③若,即,同理在單調(diào)遞減,在單調(diào)遞增(3)由(1)知,所以,令,則對(duì)恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問(wèn)題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,即方程在區(qū)間內(nèi)是否存在兩個(gè)不相等的實(shí)根,令,,則,設(shè),,則對(duì)恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個(gè)不相等的實(shí)根.綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.點(diǎn)睛:本題主要考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性以及函數(shù)的最值值,屬于難題.求函數(shù)極值、最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值.(5)如果只有一個(gè)極值點(diǎn),則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點(diǎn)值的函數(shù)值與極值的大小.20.(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點(diǎn)睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識(shí)記公式,屬中檔題.21.(1)(2)證明見解析【解析】

(1)求導(dǎo)得到,解得答案.(2)變形得到,令函數(shù),求導(dǎo)得到函數(shù)單調(diào)區(qū)間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論