2025年浙教版高一數(shù)學(xué)上冊(cè)月考試卷含答案_第1頁
2025年浙教版高一數(shù)學(xué)上冊(cè)月考試卷含答案_第2頁
2025年浙教版高一數(shù)學(xué)上冊(cè)月考試卷含答案_第3頁
2025年浙教版高一數(shù)學(xué)上冊(cè)月考試卷含答案_第4頁
2025年浙教版高一數(shù)學(xué)上冊(cè)月考試卷含答案_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年浙教版高一數(shù)學(xué)上冊(cè)月考試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、【題文】函數(shù)的定義域?yàn)閯t函數(shù)的定義域?yàn)椋ǎ〢.B.C.D.2、下列函數(shù)中,最小正周期為且圖像關(guān)于直線對(duì)稱的是()A.B.C.D.3、設(shè)a是第四象限角,則下列函數(shù)值一定為負(fù)數(shù)的是()A.sinB.cosC.tanD.cos2α4、當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過的定點(diǎn)是()A.(2,3)B.(-2,3)C.(1,-)D.(-2,0)5、已知角婁脕

的終邊經(jīng)過點(diǎn)P(m,鈭?3),脟脪cos婁脕=鈭?45

則m

等于(

)

A.鈭?114

B.114

C.鈭?4

D.4

評(píng)卷人得分二、填空題(共6題,共12分)6、已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=x2+4x,那么當(dāng)x<0時(shí),f(x)=____.7、【題文】若集合A={x|2x-1|>0},B={x||x|<1},則A∩B=_________.8、【題文】規(guī)定與是兩個(gè)運(yùn)算符號(hào),其運(yùn)算法則如下:對(duì)任意實(shí)數(shù)有:用列舉法表示集合A=____9、函數(shù)y=3cosx(0≤x≤π)的圖象與直線y=-3及y軸圍成的圖形的面積為______.10、如圖,⊙O的半徑為10,弦AB的長(zhǎng)為12,OD⊥AB,交AB于點(diǎn)D,交⊙O于點(diǎn)C,則OD=______,CD=______.11、若f(tanx)=sin2x

則f(鈭?1)

的值是______.評(píng)卷人得分三、作圖題(共9題,共18分)12、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.13、作出下列函數(shù)圖象:y=14、作出函數(shù)y=的圖象.15、畫出計(jì)算1++++的程序框圖.16、以下是一個(gè)用基本算法語句編寫的程序;根據(jù)程序畫出其相應(yīng)的程序框圖.

17、請(qǐng)畫出如圖幾何體的三視圖.

18、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個(gè)過程的位移示意圖.19、繪制以下算法對(duì)應(yīng)的程序框圖:

第一步;輸入變量x;

第二步,根據(jù)函數(shù)f(x)=

對(duì)變量y賦值;使y=f(x);

第三步,輸出變量y的值.20、已知簡(jiǎn)單組合體如圖;試畫出它的三視圖(尺寸不做嚴(yán)格要求)

評(píng)卷人得分四、證明題(共4題,共36分)21、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.22、如圖;過圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點(diǎn);

(2)若CF=3,DE?EF=,求EF的長(zhǎng).23、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.24、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.評(píng)卷人得分五、綜合題(共4題,共8分)25、拋物線y=ax2+bx+c(a≠0)過點(diǎn)A(1;-3),B(3,-3),C(-1,5),頂點(diǎn)為M點(diǎn).

(1)求該拋物線的解析式.

(2)試判斷拋物線上是否存在一點(diǎn)P;使∠POM=90°.若不存在,說明理由;若存在,求出P點(diǎn)的坐標(biāo).

(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90°,若不存在,說明理由;若存在,求出K點(diǎn)的坐標(biāo).26、如圖,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E為AB延長(zhǎng)線上的一點(diǎn),且EC交AD的延長(zhǎng)線于F.

(1)設(shè)BE為x;DF為y,試用x的式子表示y.

(2)當(dāng)∠ACE=90°時(shí),求此時(shí)x的值.27、已知函數(shù)f(x)=ax2+4x+b,其中a<0,a、b是實(shí)數(shù),設(shè)關(guān)于x的方程f(x)=0的兩根為x1,x2;f(x)=x的兩實(shí)根為α;β.

(1)若|α-β|=1,求a、b滿足的關(guān)系式;

(2)若a、b均為負(fù)整數(shù);且|α-β|=1,求f(x)解析式;

(3)試比較(x1+1)(x2+1)與7的大小.28、已知拋物線y=ax2-2ax+c-1的頂點(diǎn)在直線y=-上,與x軸相交于B(α,0)、C(β,0)兩點(diǎn),其中α<β,且α2+β2=10.

(1)求這個(gè)拋物線的解析式;

(2)設(shè)這個(gè)拋物線與y軸的交點(diǎn)為P;H是線段BC上的一個(gè)動(dòng)點(diǎn),過H作HK∥PB,交PC于K,連接PH,記線段BH的長(zhǎng)為t,△PHK的面積為S,試將S表示成t的函數(shù);

(3)求S的最大值,以及S取最大值時(shí)過H、K兩點(diǎn)的直線的解析式.參考答案一、選擇題(共5題,共10分)1、A【分析】【解析】因?yàn)楹瘮?shù)的定義域?yàn)閯t函數(shù)中因此可知定義域?yàn)檫xA【解析】【答案】A2、B【分析】【解答】將代入y=≠±1,排除A;將代入可得y=≠±1,排除C,又≠π;排除D,故選B

【分析】熟練掌握三角函數(shù)的性質(zhì)是解決此類問題的關(guān)鍵,另代入法往往是解決選擇題的好方法。3、C【分析】【解答】解:當(dāng)α=300°時(shí),=150°;

這個(gè)角的正弦是正數(shù);

當(dāng)α=﹣40°時(shí);=﹣20°;

這個(gè)角的余弦一定是正值;

此時(shí)2α=﹣80°;這個(gè)角的余弦一定是正數(shù);

綜上可知tan是負(fù)數(shù);

故選:C.

【分析】舉出第四象限的兩個(gè)角度,求出半角和二倍角,檢驗(yàn)角的正弦,余弦與正切的正負(fù),只要有負(fù)數(shù)的情況出現(xiàn),就可以得到結(jié)果.4、B【分析】解:當(dāng)a為任意實(shí)數(shù)時(shí);直線(a-1)x-y+2a+1=0恒過定點(diǎn)P;

則直線可化為(x+2)a+(-x-y+1)=0;

對(duì)于a為任意實(shí)數(shù)時(shí);

此式恒成立有

故定點(diǎn)坐標(biāo)是(-2;3).

故選B.

直線過定點(diǎn);說明直線(a-1)x-y+2a+1=0是直線系方程,先求出定點(diǎn)P即得.

本題考查直線系方程,本題通過恒過定點(diǎn)問題來考查學(xué)生方程轉(zhuǎn)化的能力及直線系的理解.【解析】【答案】B5、C【分析】解:隆脽cos婁脕=鈭?45<0

隆脿婁脕

為第II

象限或第III

象限的角。

又由角婁脕

的終邊經(jīng)過點(diǎn)P(m,鈭?3)

故婁脕

為第III

象限的角,即m<0

則cos婁脕=鈭?45=mm2+(鈭?3)2

解得m=鈭?4

或m=4(

舍去)

故選C

由已知中已知角婁脕

的終邊經(jīng)過點(diǎn)P(m,鈭?3),脟脪cos婁脕=鈭?45

我們易根據(jù)三角函數(shù)的定義確定m

的符號(hào),并構(gòu)造關(guān)于m

的方程,解方程即可求出滿足條件的m

的值.

本題考查的知識(shí)點(diǎn)是任意角的三角函數(shù)的定義,其中根據(jù)三角函數(shù)的定義確定m

的符號(hào),并構(gòu)造關(guān)于m

的方程,是解答本題的關(guān)鍵.【解析】C

二、填空題(共6題,共12分)6、略

【分析】

【解析】

設(shè)x<0;則-x>0;

∵當(dāng)x>0時(shí),f(x)=x2+4x,∴f(-x)=x2-4x;

∵f(x)是定義在R上的奇函數(shù),∴f(x)=-f(-x)=-x2+4x;

故答案為:-x2+4x.

【解析】【答案】先設(shè)x<0,則-x>0,代入f(x)=x2+4x并進(jìn)行化簡(jiǎn);再利用f(x)=-f(-x)進(jìn)行求解.

7、略

【分析】【解析】A=B=(-1,1),A∩B=.【解析】【答案】8、略

【分析】【解析】略【解析】【答案】A={1,2}9、略

【分析】解:函數(shù)y=3cosx(0≤x≤π)的圖象與直線y=-3及y軸圍成的圖形如圖:

面積為=(3sinx+3x)|=3π;

故答案為:3π.

由題意畫出圖形;利用定積分表示曲邊梯形的面積,然后計(jì)算求值.

本題考查了定積分的應(yīng)用;關(guān)鍵是利用定積分表示出所圍成的圖形面積.【解析】3π10、略

【分析】解:OD⊥AB;OD過圓心O;

∴AD=BD=AB=6;

由勾股定理得:OD===8;

OD=8

CD=OC-OD=10-8=2;

∴CD=2;

由OD⊥AB,OD過圓心O,AD=BD=AB=6,利用勾股定理可知:OD==8;CD=OC-OD=10-8=2.

本題考查垂弦定理,考查勾股定理的應(yīng)用,考查數(shù)形結(jié)合思想,考查計(jì)算能力,屬于基礎(chǔ)題.【解析】8;211、略

【分析】解:令tanx=鈭?1

隆脿x=k婁脨鈭?婁脨4

或x=k婁脨+3婁脨4

隆脿sin2x=鈭?1

即:f(鈭?1)=鈭?1

故答案為:鈭?1

令tanx=鈭?1

則有x=k婁脨鈭?婁脨4

或x=k婁脨+3婁脨4

從而解得sin2x=鈭?1

可得到結(jié)果.

本題主要考查函數(shù)定義及解析式的應(yīng)用,同時(shí)還考查了轉(zhuǎn)化思想和換元思想.【解析】鈭?1

三、作圖題(共9題,共18分)12、略

【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最省.【解析】【解答】解:作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.

∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費(fèi)用為10000元.13、【解答】?jī)绾瘮?shù)y={#mathml#}x32

{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過原點(diǎn)且單調(diào)遞增,如圖所示;

【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫出題目中的函數(shù)圖象即可.14、【解答】圖象如圖所示。

【分析】【分析】描點(diǎn)畫圖即可15、解:程序框圖如下:

【分析】【分析】根據(jù)題意,設(shè)計(jì)的程序框圖時(shí)需要分別設(shè)置一個(gè)累加變量S和一個(gè)計(jì)數(shù)變量i,以及判斷項(xiàng)數(shù)的判斷框.16、解:程序框圖如下:

【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號(hào)及其作用,即可畫出流程圖.17、解:如圖所示:

【分析】【分析】由幾何體是圓柱上面放一個(gè)圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長(zhǎng)方形上邊加一個(gè)三角形,長(zhǎng)方形上邊加一個(gè)三角形,圓加一點(diǎn).18、解:由題意作示意圖如下;

【分析】【分析】由題意作示意圖。19、解:程序框圖如下:

【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時(shí),函數(shù)解析式不同,因此當(dāng)給出一個(gè)自變量x的值時(shí),必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因?yàn)楹瘮?shù)解析式分了三段,所以判斷框需要兩個(gè),即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.20、

解:幾何體的三視圖為:

【分析】【分析】利用三視圖的作法,畫出三視圖即可.四、證明題(共4題,共36分)21、略

【分析】【分析】延長(zhǎng)AM,過點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.22、略

【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點(diǎn).

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=23、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結(jié)論;

(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽R(shí)t△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽R(shí)t△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.24、略

【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.五、綜合題(共4題,共8分)25、略

【分析】【分析】(1)將A(1,-3),B(3,-3),C(-1,5)三點(diǎn)坐標(biāo)代入y=ax2+bx+c中,列方程組求a、b;c的值;得出拋物線解析式;

(2)拋物線上存在一點(diǎn)P,使∠POM=90?.設(shè)(a,a2-4a);過P點(diǎn)作PE⊥y軸,垂足為E;過M點(diǎn)作MF⊥y軸,垂足為F,利用互余關(guān)系證明Rt△OEP∽R(shí)t△MFO,利用相似比求a即可;

(3)拋物線上必存在一點(diǎn)K,使∠OMK=90?.過頂點(diǎn)M作MN⊥OM,交y軸于點(diǎn)N,在Rt△OMN中,利用互余關(guān)系證明△OFM∽△MFN,利用相似比求N點(diǎn)坐標(biāo),再求直線MN解析式,將直線MN解析式與拋物線解析式聯(lián)立,可求K點(diǎn)坐標(biāo).【解析】【解答】解:(1)根據(jù)題意,得,解得;

∴拋物線的解析式為y=x2-4x;

(2)拋物線上存在一點(diǎn)P;使∠POM=90?.

x=-=-=2,y===-4;

∴頂點(diǎn)M的坐標(biāo)為(2;-4);

設(shè)拋物線上存在一點(diǎn)P,滿足OP⊥OM,其坐標(biāo)為(a,a2-4a);

過P點(diǎn)作PE⊥y軸;垂足為E;過M點(diǎn)作MF⊥y軸,垂足為F.

則∠POE+∠MOF=90?;∠POE+∠EPO=90?.

∴∠EPO=∠FOM.

∵∠OEP=∠MFO=90?;

∴Rt△OEP∽R(shí)t△MFO.

∴OE:MF=EP:OF.

即(a2-4a):2=a:4;

解得a1=0(舍去),a2=;

∴P點(diǎn)的坐標(biāo)為(,);

(3)過頂點(diǎn)M作MN⊥OM;交y軸于點(diǎn)N.則∠FMN+∠OMF=90?.

∵∠MOF+∠OMF=90?;

∴∠MOF=∠FMN.

又∵∠OFM=∠MFN=90?;

∴△OFM∽△MFN.

∴OF:MF=MF:FN.即4:2=2:FN.∴FN=1.

∴點(diǎn)N的坐標(biāo)為(0;-5).

設(shè)過點(diǎn)M,N的直線的解析式為y=kx+b,則;

解得,∴直線的解析式為y=x-5;

聯(lián)立得x2-x+5=0,解得x1=2,x2=;

∴直線MN與拋物線有兩個(gè)交點(diǎn)(其中一點(diǎn)為頂點(diǎn)M).

另一個(gè)交點(diǎn)K的坐標(biāo)為(,-);

∴拋物線上必存在一點(diǎn)K,使∠OMK=90?.坐標(biāo)為(,-).26、略

【分析】【分析】(1)過B作BG∥AF交BCEC于G,則可以得到△CDF∽△CBG,接著利用相似三角形的性質(zhì)得到,在Rt△ABD中,利用勾股定理可得;又△EGB∽△EFA,由此利用相似三角形的性質(zhì)即可求出y與x的函數(shù)關(guān)系;

(2)當(dāng)∠ACE=90°時(shí),則有∠FCD=∠DAC,由此得到Rt△ADC∽R(shí)t△CDF,接著利用相似三角形的性質(zhì)得到CD2=AD?DF,所以16=,從而得到,代入,即可求出x.【解析】【解答】解:(1)過B作BG∥AF交EC于G,

則△CDF∽△CBG;

∴;

∴;

在Rt△ABD中,可得;

又∵△EGB∽△EFA;

∴;

∴;

(2)當(dāng)∠ACE=90°時(shí);則有∠FCD=∠DAC;

∴Rt△ADC∽R(shí)t△CDF;

∴;

∴CD2=AD?DF;

∴16=;

∴;

代入,有;

解得.27、略

【分析】【分析】(1)根據(jù)f(x)=x的兩實(shí)根為α、β,可列出方程用a,b表示兩根α,β,根據(jù)|α-β|=1,可求出a、b滿足的關(guān)系式.

(2)根據(jù)(1)求出的結(jié)果和a、b均為負(fù)整數(shù),且|α-β|=1,可求出a,b;從而求出f(x)解析式.

(3)因?yàn)殛P(guān)于x的方程f(x)=0的兩根為x1,x2,用a和b表示出(x1+1)(x2+1),討論a,b的關(guān)系可比較(x1+1)(x2+1)與7的大小的結(jié)論.【解析】【解答】解:(1)∵f(x)=x;

∴ax2+4x+b=x;

α=,β=.

∵|α-β|=1;

∴=|a|;

∴a2+4ab-9=0;

(2)∵a、b均為負(fù)整數(shù),a2+4ab-9=0;

∴a(a+4b)=9,解得a=-1,b=-2.

∴f(x)=-x2+4x-2.

(3)∵關(guān)于x的方程f(x)=0的兩根為x1,x2;

∴ax2+4x+b=0

∴x1x2=,x1+x2=-.

∴(x1+1)(x2+1)=x1x2+x1+x2+1=-+1.

-+1-7=;

∵a<0;

當(dāng)b>6a+4時(shí),(x1+1)(x2+1)<7.

當(dāng)b=6a+4時(shí),(x1+1)(x2+1)=7.

當(dāng)b<6a+4時(shí),(x1+1)(x2+1)>7.28、略

【分析】【分析】(1)把頂點(diǎn)A的坐標(biāo)代入直線的解析式得出c=a+;根據(jù)根與系數(shù)的關(guān)系求出c=1-3a,得出方程組,求出方程組的解即可;

(2)求出P、B、C的坐標(biāo),BC=4,根據(jù)sin∠BCP==,和HK∥BP,得出=,求出PK=t;過H作HG⊥PC于G,根據(jù)三角形的面積公式即可求出答案;

(3)根據(jù)S=-(t-2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論