福建省師大附中2024屆招生全國統(tǒng)一考試模擬卷數(shù)學試題_第1頁
福建省師大附中2024屆招生全國統(tǒng)一考試模擬卷數(shù)學試題_第2頁
福建省師大附中2024屆招生全國統(tǒng)一考試模擬卷數(shù)學試題_第3頁
福建省師大附中2024屆招生全國統(tǒng)一考試模擬卷數(shù)學試題_第4頁
福建省師大附中2024屆招生全國統(tǒng)一考試模擬卷數(shù)學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省師大附中2023屆招生全國統(tǒng)一考試最新模擬卷數(shù)學試題(一)注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為虛數(shù)單位,則復數(shù),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若函數(shù)()的圖象過點,則()A.函數(shù)的值域是 B.點是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸3.已知函數(shù),當時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.4.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.5.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.6.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.7.若復數(shù)z滿足,則復數(shù)z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知集合,則()A. B.C. D.9.若為純虛數(shù),則z=()A. B.6i C. D.2010.已知為銳角,且,則等于()A. B. C. D.11.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調遞減B.函數(shù)在上單調遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是12.若θ是第二象限角且sinθ=,則=A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則不等式的解集為____________.14.學校藝術節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是___.15.若實數(shù)滿足不等式組,則的最小值是___16.設是公差不為0的等差數(shù)列的前n項和,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若不等式恒成立,求實數(shù)a的取值范圍.18.(12分)設等比數(shù)列的前項和為,若(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在和之間插入個實數(shù),使得這個數(shù)依次組成公差為的等差數(shù)列,設數(shù)列的前項和為,求證:.19.(12分)在中,內角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.20.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.21.(12分)已知拋物線:()上橫坐標為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.22.(10分)隨著時代的發(fā)展,A城市的競爭力、影響力日益卓著,這座創(chuàng)新引領型城市有望踏上向“全球城市”發(fā)起“沖擊”的新征程.A城市的活力與包容無不吸引著無數(shù)懷揣夢想的年輕人前來發(fā)展,目前A城市的常住人口大約為1300萬.近日,某報社記者作了有關“你來A城市發(fā)展的理由”的調查問卷,參與調查的對象年齡層次在25~44歲之間.收集到的相關數(shù)據(jù)如下:來A城市發(fā)展的理由人數(shù)合計自然環(huán)境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環(huán)境3.城市服務到位1507004.創(chuàng)業(yè)氛圍好3005.開放且包容250合計10001000(1)根據(jù)以上數(shù)據(jù),預測400萬25~44歲年齡的人中,選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有多少人;(2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發(fā)放紀念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中有100名男性;在選擇“人文環(huán)境”作為來A城市發(fā)展的理由的700人中有400名男性;請?zhí)顚懴旅媪新?lián)表,并判斷是否有的把握認為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關?自然環(huán)境人文環(huán)境合計男女合計附:,.P()0.0500.0100.001k3.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

首先根據(jù)特殊角的三角函數(shù)值將復數(shù)化為,求出,再利用復數(shù)的幾何意義即可求解.【詳解】,,則在復平面內對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數(shù)的幾何意義、共軛復數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎題.2.A【解析】

根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質,得出結論.【詳解】由函數(shù)()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質,需熟記性質與公式,屬于基礎題.3.C【解析】

求導分析函數(shù)在時的單調性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結果.【詳解】當時,,令,則;,則,∴函數(shù)在單調遞增,在單調遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質,屬于難題.4.B【解析】

作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質定理可得出,可得出點為的中點,同理可得出點為的中點,結合中位線的性質可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質的應用,解答的關鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.5.B【解析】

由題意首先確定幾何體的空間結構特征,然后結合空間結構特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點睛】(1)以三視圖為載體考查幾何體的表面積,關鍵是能夠對給出的三視圖進行恰當?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關系及數(shù)量關系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理.(3)圓柱、圓錐、圓臺的側面是曲面,計算側面積時需要將這個曲面展為平面圖形計算,而表面積是側面積與底面圓的面積之和.6.B【解析】

設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,

,

當且僅當三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現(xiàn)了數(shù)形結合的數(shù)學思想,屬于中檔題.7.A【解析】

化簡復數(shù),求得,得到復數(shù)在復平面對應點的坐標,即可求解.【詳解】由題意,復數(shù)z滿足,可得,所以復數(shù)在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何表示方法,其中解答中熟記復數(shù)的運算法則,結合復數(shù)的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.8.B【解析】

先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.9.C【解析】

根據(jù)復數(shù)的乘法運算以及純虛數(shù)的概念,可得結果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復數(shù)的概念與運算,屬基礎題.10.C【解析】

由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎題.11.B【解析】

根據(jù)圖象求得函數(shù)的解析式,結合余弦函數(shù)的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調遞減,當時,函數(shù)在上單調遞減,故A正確;令,得,故函數(shù)在上單調遞增.當時,函數(shù)在上單調遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.12.B【解析】由θ是第二象限角且sinθ=知:,.所以.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數(shù)的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.14.C【解析】

假設獲得一等獎的作品,判斷四位同學說對的人數(shù).【詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結果,2、假設結果檢驗條件.15.-1【解析】作出可行域,如圖:由得,由圖可知當直線經(jīng)過A點時目標函數(shù)取得最小值,A(1,0)所以-1故答案為-116.18【解析】

將已知已知轉化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質以及求和,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用分段討論法去掉絕對值,結合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數(shù)a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.18.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ),,兩式相減化簡整理利用等比數(shù)列的通項公式即可得出.(Ⅱ)由題設可得,可得,利用錯位相減法即可得出.【詳解】解:(Ⅰ)因為,故,兩式相減可得,,故,因為是等比數(shù)列,∴,又,所以,故,所以;(Ⅱ)由題設可得,所以,所以,①則,②①-②得:,所以,得證.【點睛】本題考查了數(shù)列遞推關系、等比數(shù)列的通項公式求和公式、錯位相減法,考查了推理能力與計算能力,屬于中檔題.19.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因為,由正弦定理可得,,又,所以,所以根據(jù)余弦定理得,,解得,;(Ⅱ)因為,所以,,,則.【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎題.20.(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據(jù)正弦函數(shù)的性質計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數(shù)的性質的應用,屬于中檔題.21.(1);(2)【解析】

(1)根據(jù)橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得到求解.(2)設過點的直線方程為,根據(jù)直線與圓相切,則有,整理得:,根據(jù)題意,建立,將韋達定理代入求解.【詳解】(1)因為橫坐標為3的點與拋物線焦點的距離為4,由拋物線的定義得:,解得:.(2)設過點的直線方程為,因為直線與圓相切,所以,整理得:,,由題意得:所以,,因為,所以,所以.【點睛】本題主要考查拋物線的定義及點與拋物線,直線與圓的位置關系,還考查了運算求解的能力,屬于中檔題.22.(1)(萬)(2)(3)填表見解析;有的把握認為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關【解析】

(1)在1000個樣本中選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有300個,根據(jù)頻率公式即可求得結果.(2)由分層抽樣的知識可得,抽取6人中,4人選擇“森林城市,空氣清新”,2人選擇“降水充足,氣候怡人”求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論