煙臺城市科技職業(yè)學(xué)院《機(jī)器智能與信息對抗》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
煙臺城市科技職業(yè)學(xué)院《機(jī)器智能與信息對抗》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
煙臺城市科技職業(yè)學(xué)院《機(jī)器智能與信息對抗》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
煙臺城市科技職業(yè)學(xué)院《機(jī)器智能與信息對抗》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
煙臺城市科技職業(yè)學(xué)院《機(jī)器智能與信息對抗》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁煙臺城市科技職業(yè)學(xué)院《機(jī)器智能與信息對抗》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,偏差-方差權(quán)衡(Bias-VarianceTradeoff)描述的是()A.模型的復(fù)雜度與性能的關(guān)系B.訓(xùn)練誤差與測試誤差的關(guān)系C.過擬合與欠擬合的關(guān)系D.以上都是2、在進(jìn)行時(shí)間序列預(yù)測時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測股票價(jià)格的走勢。以下關(guān)于時(shí)間序列預(yù)測方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過對歷史數(shù)據(jù)的加權(quán)平均和殘差來進(jìn)行預(yù)測B.差分整合移動平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長期依賴關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測任務(wù)D.所有的時(shí)間序列預(yù)測方法都能準(zhǔn)確地預(yù)測未來的股票價(jià)格,不受市場不確定性和突發(fā)事件的影響3、在使用深度學(xué)習(xí)進(jìn)行圖像分類時(shí),數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個(gè)有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項(xiàng)是不正確的?()A.可以通過隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來增加數(shù)據(jù)的多樣性B.對圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過擬合,但會增加數(shù)據(jù)標(biāo)注的工作量D.過度的數(shù)據(jù)增強(qiáng)可能會導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無關(guān)的特征,影響模型性能4、在一個(gè)圖像分類任務(wù)中,模型在訓(xùn)練集上表現(xiàn)良好,但在測試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因?qū)е碌??()A.過擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當(dāng)5、考慮一個(gè)回歸問題,我們要預(yù)測房價(jià)。數(shù)據(jù)集包含了房屋的面積、房間數(shù)量、地理位置等特征以及對應(yīng)的房價(jià)。在選擇評估指標(biāo)來衡量模型的性能時(shí),需要綜合考慮模型的準(zhǔn)確性和誤差的性質(zhì)。以下哪個(gè)評估指標(biāo)不僅考慮了預(yù)測值與真實(shí)值的偏差,還考慮了偏差的平方?()A.平均絕對誤差(MAE)B.均方誤差(MSE)C.決定系數(shù)(R2)D.準(zhǔn)確率(Accuracy)6、在使用梯度下降算法優(yōu)化模型參數(shù)時(shí),如果學(xué)習(xí)率設(shè)置過大,可能會導(dǎo)致以下哪種情況()A.收斂速度加快B.陷入局部最優(yōu)解C.模型無法收斂D.以上情況都不會發(fā)生7、集成學(xué)習(xí)是一種提高機(jī)器學(xué)習(xí)性能的方法。以下關(guān)于集成學(xué)習(xí)的說法中,錯誤的是:集成學(xué)習(xí)通過組合多個(gè)弱學(xué)習(xí)器來構(gòu)建一個(gè)強(qiáng)學(xué)習(xí)器。常見的集成學(xué)習(xí)方法有bagging、boosting和stacking等。那么,下列關(guān)于集成學(xué)習(xí)的說法錯誤的是()A.bagging方法通過隨機(jī)采樣訓(xùn)練數(shù)據(jù)來構(gòu)建多個(gè)不同的學(xué)習(xí)器B.boosting方法通過逐步調(diào)整樣本權(quán)重來構(gòu)建多個(gè)不同的學(xué)習(xí)器C.stacking方法將多個(gè)學(xué)習(xí)器的預(yù)測結(jié)果作為新的特征輸入到一個(gè)元學(xué)習(xí)器中D.集成學(xué)習(xí)方法一定比單個(gè)學(xué)習(xí)器的性能更好8、在深度學(xué)習(xí)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用于圖像識別等領(lǐng)域。假設(shè)我們正在設(shè)計(jì)一個(gè)CNN模型,對于圖像分類任務(wù),以下哪個(gè)因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經(jīng)元數(shù)量D.以上因素影響都不大9、在特征工程中,獨(dú)熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是10、在監(jiān)督學(xué)習(xí)中,常見的算法有線性回歸、邏輯回歸、支持向量機(jī)等。以下關(guān)于監(jiān)督學(xué)習(xí)算法的說法中,錯誤的是:線性回歸用于預(yù)測連續(xù)值,邏輯回歸用于分類任務(wù)。支持向量機(jī)通過尋找一個(gè)最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關(guān)于監(jiān)督學(xué)習(xí)算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復(fù)雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機(jī)在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計(jì)算成本較高D.監(jiān)督學(xué)習(xí)算法的性能只取決于模型的復(fù)雜度,與數(shù)據(jù)的特征選擇無關(guān)11、在進(jìn)行遷移學(xué)習(xí)時(shí),以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場景和優(yōu)勢,哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時(shí),可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個(gè)領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個(gè)不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用12、想象一個(gè)圖像識別的任務(wù),需要對大量的圖片進(jìn)行分類,例如區(qū)分貓和狗的圖片。為了達(dá)到較好的識別效果,同時(shí)考慮計(jì)算資源和訓(xùn)練時(shí)間的限制。以下哪種方法可能是最合適的?()A.使用傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如基于特征工程的支持向量機(jī),需要手動設(shè)計(jì)特征,但計(jì)算量相對較小B.采用淺層的神經(jīng)網(wǎng)絡(luò),如只有一到兩個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò),訓(xùn)練速度較快,但可能無法捕捉復(fù)雜的圖像特征C.運(yùn)用深度卷積神經(jīng)網(wǎng)絡(luò),如ResNet架構(gòu),能夠自動學(xué)習(xí)特征,識別效果好,但計(jì)算資源需求大,訓(xùn)練時(shí)間長D.利用遷移學(xué)習(xí),將在大規(guī)模圖像數(shù)據(jù)集上預(yù)訓(xùn)練好的模型,如Inception模型,微調(diào)應(yīng)用到當(dāng)前任務(wù),節(jié)省訓(xùn)練時(shí)間和計(jì)算資源13、某機(jī)器學(xué)習(xí)模型在訓(xùn)練時(shí)出現(xiàn)了過擬合現(xiàn)象,除了正則化,以下哪種方法也可以嘗試用于緩解過擬合?()A.增加訓(xùn)練數(shù)據(jù)B.減少特征數(shù)量C.早停法D.以上方法都可以14、在一個(gè)分類問題中,如果需要對新出現(xiàn)的類別進(jìn)行快速適應(yīng)和學(xué)習(xí),以下哪種模型具有較好的靈活性?()A.在線學(xué)習(xí)模型B.增量學(xué)習(xí)模型C.遷移學(xué)習(xí)模型D.以上模型都可以15、在一個(gè)多標(biāo)簽分類問題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類別。例如,一篇文章可能同時(shí)涉及科技、娛樂和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類任務(wù)?()A.將多標(biāo)簽問題轉(zhuǎn)化為多個(gè)二分類問題,分別進(jìn)行預(yù)測B.使用一個(gè)單一的分類器,輸出多個(gè)概率值表示屬于各個(gè)類別的可能性C.對每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類器D.以上方法都不可行,多標(biāo)簽分類問題無法通過機(jī)器學(xué)習(xí)解決二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋如何在機(jī)器學(xué)習(xí)中處理時(shí)空數(shù)據(jù)。2、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行人體姿態(tài)估計(jì)。3、(本題5分)說明機(jī)器學(xué)習(xí)中模型的超參數(shù)調(diào)優(yōu)方法。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)論述機(jī)器學(xué)習(xí)在金融風(fēng)險(xiǎn)管理中的應(yīng)用。討論風(fēng)險(xiǎn)評估、信用風(fēng)險(xiǎn)建模、市場風(fēng)險(xiǎn)預(yù)測等方面的機(jī)器學(xué)習(xí)方法和應(yīng)用效果。2、(本題5分)詳細(xì)闡述在文本摘要生成任務(wù)中,機(jī)器學(xué)習(xí)算法的應(yīng)用和對摘要質(zhì)量的評價(jià)指標(biāo)。分析如何生成簡潔準(zhǔn)確的文本摘要。3、(本題5分)闡述機(jī)器學(xué)習(xí)中的多模態(tài)情感分析。解釋多模態(tài)情感分析的概念和重要性,介紹常見的多模態(tài)情感分析方法。分析多模態(tài)情感分析在不同領(lǐng)域的應(yīng)用及面臨的挑戰(zhàn)。4、(本題5分)論述機(jī)器學(xué)習(xí)在建筑智能化中的應(yīng)用。分析數(shù)據(jù)收集和模型選擇的關(guān)鍵問題,以及對建筑性能和用戶體驗(yàn)的影響。5、(本題5分)論述監(jiān)督學(xué)習(xí)中線性回歸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論