




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省遵義市中考數(shù)學(xué)試卷
一、選擇題(本題共1。個(gè)小題,每小題3分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只
有一項(xiàng)是符合題目要求的,請用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑、涂滿.)
1.(3分)(?遵義)如果+30m表示向東走30m,那么向西走40m表示為()
A.+40mB.-40mC.+30mD.-30m
考點(diǎn):正數(shù)和負(fù)數(shù).
分析?此題主要用正負(fù)數(shù)來表示具有意義相反的兩種量:向東走記為正,則向西走就記為負(fù),
直接得出結(jié)論即可.
解答:解:如果+30米表示向東走30米,那么向西走40m表示-40m.
故選B.
點(diǎn)評:此題主要考查正負(fù)數(shù)的意義,正數(shù)與負(fù)數(shù)表示意義相反的兩種量,看清規(guī)定哪一個(gè)為
正,則和它意義相反的就為負(fù).
2.(3分)(?遵義)一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體是()
0了
考點(diǎn):由三視圖判斷幾何體
分析:主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.結(jié)合圖
形,使用排除法來解答.
解答:解:如圖,俯視圖為三角形,故可排除A、B.主視圖以及左視圖都是矩形,可排除
C,故選D.
點(diǎn)評:本題考查了由三視圖判斷幾何體的知識,難度一般,考生做此類題時(shí)可利用排除法解
答.
3.(3分)(?遵義)遵義市是國家級紅色旅游城市,每年都吸引眾多海內(nèi)外游客前來觀光、
旅游.據(jù)有關(guān)部門統(tǒng)計(jì)報(bào)道:全市共接待游客3354萬人次.將3354萬用科學(xué)記數(shù)法表示為
()
A.3.354x106B.3.354x107C.3.354x108D.33.54x106
考點(diǎn):科學(xué)記數(shù)法一表示較大的數(shù).
分析:科學(xué)記數(shù)法的表示形式為axl(f的形式,其中l(wèi)w|a|V10,n為整數(shù).確定n的值時(shí),
要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)
原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值VI時(shí),n是負(fù)數(shù).
解答:解:將3354萬用科學(xué)記數(shù)法表示為:3.354x107.
故選:B.
點(diǎn)評:此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為axion的形式,其中14間
<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.
4.(3分)(?遵義)如圖,直線111112,若N1=140。,Z2=70°,則N3的度數(shù)是()
考點(diǎn):平行線的性質(zhì):三角形的外角性質(zhì).
分析:首先根據(jù)平行線的性質(zhì)得出N1=/4=140。,進(jìn)而得出N5度數(shù),再利用三角形內(nèi)角和
定理以及對頂角性質(zhì)得出/3的度數(shù).
解答:解::直線hII12,Z1=140°,
Z1=Z4=140°,
/.Z5=180°-140°=40°,
,,,z2=70%
N6=180°-70°-40°=70°,
Z3=z6,
N3的度數(shù)是70°.
故選:A.
點(diǎn)評:此題主要考查了平行線的性質(zhì)以及三角形內(nèi)角和定理等知識,根據(jù)已知得*N5的度
數(shù)是解題關(guān)鍵.
5.(3分)(?遵義)計(jì)算(-Lb?)3的結(jié)果是()
2
A--旦13b6B.-匕右C..^3.^5D.3b6
2288
考點(diǎn):棄的乘方與積的乘方.
分析:利用積的乘方與塞的乘方的運(yùn)算法則求解即可求得答案.
2
解答:解:(-ib)3=(-2)3位3(b?)3=?工33b6.
228
故選D.
點(diǎn)評:此題考查了積的乘方與寤的乘方.注意掌握指數(shù)的變化是解此題的關(guān)鍵.
6.(3分)(?遵義)如圖,在4x4正方形網(wǎng)格中,任選取一個(gè)白色的小正方形并涂黑,使圖
中黑色部分的圖形構(gòu)成一個(gè)軸對稱圖形的概率是()
C._1D.1
~312
考點(diǎn):概率公式;利用軸對稱設(shè)計(jì)圖案.
分析:由白色的小正方形有12個(gè),能構(gòu)成一個(gè)軸對稱圖形的有2個(gè)情況,直接利用概率公
式求解即可求得答案.
解答:解:二,白色的小正方形有12個(gè),能構(gòu)成一個(gè)軸對稱圖形的有2個(gè)情況,
???使圖中黑色部分的圖形構(gòu)成一個(gè)軸對稱圖形的概率是:
126
故選A.
點(diǎn)評:此題考查了概率公式的應(yīng)用與軸對稱.注意概率-所求情況數(shù)與總情況數(shù)之比.
7.(3分)(?遵義)Pi(xi,yi),P2(X2,y2)是正比例函數(shù)y=--x圖象上的兩點(diǎn),下列
判斷中,正確的是()
A.yi>y2B.yi<y2C.當(dāng)xi〈X2時(shí),yi<D.當(dāng)xi〈X2時(shí),yi>
y2y2
考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
分析:根據(jù)止比例困數(shù)圖象的性質(zhì):當(dāng)k<0時(shí),y隨x的增大而減小即可求解.
解答:解:,?,y=--x,k=-1<0,
22
「.y隨x的增大而減小.
故選D.
點(diǎn)評:本題考杳正比例函數(shù)圖象的性質(zhì):它是經(jīng)過原點(diǎn)的一條直線.當(dāng)k>0時(shí),圖象經(jīng)過
一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),圖象經(jīng)過二、四象限,y隨x的增大
而減小.
8.(3分)(?遵義)如圖,A、B兩點(diǎn)在數(shù)軸上表示的數(shù)分別是a、b,則下列式子中成立的
是()
.A....B.
,??----------------------1--------1?■>
?2匿1012A3
A.a+b<0B.-a<-bC.1-2a>l-2bD.|a|-|b|>0
考點(diǎn):實(shí)數(shù)與數(shù)軸.
分析:根據(jù)a、b兩點(diǎn)在數(shù)軸上的位置判斷出其取值范圍,再對各選項(xiàng)進(jìn)行逐一分析即可.
解答:解:a、b兩點(diǎn)在數(shù)軸上的位置可知:-2VaV-I,b>2,
/.a+b>0,-a>b,故A、B錯(cuò)誤;
a<b,
-2a>-2b,
/.1-2a>l-2b,故C正確;
v|a|<2,|b|>2,
A|a|-|b|<0,故D錯(cuò)誤.
故選C.
點(diǎn)評:本題考查的是數(shù)軸的特點(diǎn),根據(jù)a、b兩點(diǎn)在數(shù)軸上的位置判斷出其取值范圍是解答
此題的關(guān)鍵.
9.(3分)(?遵義)如圖,將邊長為1cm的等邊三角形ABC沿直線1向右翻動(不滑動),
點(diǎn)B從開始到結(jié)束,所經(jīng)過路徑的長度為()
A.3D.3cm
—ncmB,(2+&)cm,,?兀cm
233
考點(diǎn):弧長的計(jì)算;等邊三角形的性質(zhì);旋轉(zhuǎn)的性質(zhì).
分析:通過觀察圖形,可得從開始到結(jié)束經(jīng)過兩次翻動,求出點(diǎn)B兩次劃過的弧長,即可得
出所經(jīng)過路徑的長度.
解答:解:?「△ABC是等邊三角形,
ZACB=600,
ZAC(A)=120\
點(diǎn)B兩次翻動劃過的弧長相等,
則點(diǎn)B經(jīng)過的路徑長=2x120兀X1=
1803
故選C.
點(diǎn)評:本題考查了弧長的計(jì)算,解答本題的關(guān)鍵是仔細(xì)觀察圖形,得到點(diǎn)B運(yùn)動的路徑,注
意熟練掌握弧長的計(jì)算公式.
10.(3分)(?遵義)二次函數(shù)丫=2,N,P中,值小于0的數(shù)有()
考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.
專題:計(jì)算題.
分析:根據(jù)圖象得到X=-2時(shí)對應(yīng)的函數(shù)值小于0,得到N=4a-2b+c的值小于0,根據(jù)對
稱軸在直線x=-l右邊,利用對稱軸公式列出不等式,根據(jù)開口向下得到a小于0,
變形即可對于P作出判斷,根據(jù)a,b,c的符號判斷得出a+b-c的符號.
解答:解:;圖象開口向下,」.aVO,
對稱軸在y軸左側(cè),
a,b同號,
/.a<0,b<0,
圖象經(jīng)過y軸正半軸,
c>0,
M=a+b-c<0,
當(dāng)x=-2時(shí),y=4a-2b+c<0,
/.N=4a-2b+cV0,
,/--A>-1,
2a
A<i,
2a
b>2a,
2a-b<0,
P=2a-bVO,
則M,N,P中,值小于0的數(shù)有M,N,P.
故選:A.
點(diǎn)評:此題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,根據(jù)圖象判斷出對稱軸以及a,b,c的
符號是解題關(guān)鍵.
二、填空題(本題共8小題,每小題4分,共32分.答題請用黑色墨水筆或黑色簽字筆直
接在答題卡的相應(yīng)位置上.)
11.(4分)(?遵義)計(jì)算:°-2-1=_工_.
一2-
考點(diǎn):負(fù)整數(shù)指數(shù)爆;零指數(shù)塞.
分析:根據(jù)任何數(shù)的零次察等于1,負(fù)整數(shù)指數(shù)次累等于正整數(shù)指數(shù)次幕的倒數(shù)進(jìn)行計(jì)算即
可得解.
解答:解:0-2-,,
=1-1,
2
_1
2
故答案為:1.
2
點(diǎn)評:本題考杳了任何數(shù)的零次塞等于1,負(fù)整數(shù)指數(shù)次鼎等于正整數(shù)指數(shù)次塞的倒數(shù),是
基礎(chǔ)題,熟記兩個(gè)性質(zhì)是解題的關(guān)鍵.
12.(4分)(?遵義)已知點(diǎn)P(3,-1)關(guān)于y軸的對稱點(diǎn)Q的坐標(biāo)是(a+b,l-b),則
ab的值為25.
考點(diǎn):關(guān)于X軸、y軸對稱的點(diǎn)的坐標(biāo).
分析:根據(jù)關(guān)于y軸對稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得a+b=-3,1
-b=-1,再解方程可得a、b的值,進(jìn)而算出a15的值.
解答:解:...點(diǎn)P(3,-1)關(guān)于y軸的對稱點(diǎn)Q的坐標(biāo)是(a+b,1-b),
a+b=-3,1-b=-1,
解得:b=2,a=-5)
ab=25,
故答案為:25.
點(diǎn)評:此題主要考查了關(guān)于y軸對稱點(diǎn)的坐標(biāo)特點(diǎn),關(guān)鍵是掌握點(diǎn)的坐標(biāo)的變化規(guī)律.
13.(4分)(?遵義)分解因式:x3-x=x(x+1)(x-1).
考點(diǎn):提公因式法與公式法的綜合運(yùn)用.
分析:本題可先提公因式x,分解成x(x2-1),而X27可利用平方差公式分解.
解答:解:x3-x,
=x(x2-1),
=x(x+1)(X-1).
點(diǎn)評:本題考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式繼續(xù)進(jìn)
行因式分解,分解因式一定要徹底.
14.(4分)(?遵義)如圖,0(2是00的半徑,人13是弦,且0(2_1人8某}在。0上,/APO26。,
貝此BOC=52°
考點(diǎn):圓周角定理;垂徑定理.
分析:------
由OC是。0的半徑,AB是弦,且OC_LAB,根據(jù)垂徑定理的即可求得:AC=BC,
又由圓周角定理,即可求得答案.
解答:解:?「OC是。0的半徑,AB是弦,且OC_LAB,
AC=BC,
ZBOC=2ZAPC=2x26°=52°.
故答案為:52°.
點(diǎn)評:此題考查了垂徑定理與圓周角定理.此題比較簡也,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
15.(4分)(?遵義)己知x-6=0的一個(gè)根,則方程的另一個(gè)根是3.
考點(diǎn):根與系數(shù)的關(guān)系.
專題:計(jì)算題.
分析:根據(jù)根與系數(shù)的關(guān)系得到-2?xi=-6,然后解一次方程即可.
解答:解:設(shè)方程另一個(gè)根為xi,根據(jù)題意得?2”尸-6,
所以xi=3.
故答案為3.
點(diǎn)評:本題考查了一元二次方程ax2+bx+c=0(a#0)的根與系數(shù)的關(guān)系:若方程兩個(gè)為x”
X2>則X[+X2=?王,X|?X2=—.
aa
16.(4分)(?遵義)如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)0,點(diǎn)E、F分別
是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則aAEF的周長=9cm.
考點(diǎn):三角形中位線定理;矩形的性質(zhì).
分析:先求出矩形的對角線AC,根據(jù)中位線定理可得HIEF,繼而可得出△AEF的周長.
解備:解:在ABC中,AC=7AB2+BC2=IOcm,
???點(diǎn)E、F分別是AO、AD的中點(diǎn),
EF是△A0D的中位線,EF=1OD=」BD=J:AC=&,AF=」AD=」BC=4cm,AE=」
2442222
AO=1AC=-^,
42
△AEF的周長=AE+AF+EF=9cm.
故答案為:9.
點(diǎn)評:本題考查了三角形的中位線定理、勾股定理及矩形的性質(zhì),解答本題需要我們熟練學(xué)
握三角形中位線的判定與性質(zhì).
17.(4分)(?遵義)如圖,在Rt/kABC中,ZACB=90°,AC=BC=1,E為BC邊上的一點(diǎn),
以A為圓心,AE為半徑的圓弧交AB于點(diǎn)D,交AC的延長于點(diǎn)E若圖中兩個(gè)陰影部分
的面積相等,則AF的長為2Z互(結(jié)果保留根號).
~71~
考點(diǎn):扇形面積的計(jì)算.
分析:若兩個(gè)陰影部分的面積相等,那么△ABC和扇形ADF的面積就相等,可分別表示出
兩者的面積,然后列出方程即可求出AF的長度.
解答:解:;圖中兩個(gè)陰影部分的面積相等,
2
???S用形ADF=SAABC,即:4571XAF-=^XACXBC,
3602
又「AC=BC=I,
AF2=-1,
n
..AF;2行
K
故答案為漢互.
點(diǎn)評:此題主要考查了扇形面積的計(jì)算方法及等腰宜.角三角形的性質(zhì),能夠根據(jù)題意得到
△ABC和扇形ADF的面積相等,是解決此題的關(guān)鍵,難度一般.
18.(4分)(?遵義)如圖,已知直線y=2x與雙曲線y;上(k>0)交于A、B兩點(diǎn),點(diǎn)B
2x
的坐標(biāo)為(?4,-2),C為雙曲線y=上(k>0)上一點(diǎn),且在第一象限內(nèi),若AAOC的面
x
考點(diǎn):反比例函數(shù)與?次函數(shù)的交點(diǎn)問題.
分析:把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式求出k值,再根據(jù)反比例函數(shù)圖象的中心對稱性
求出點(diǎn)A的坐標(biāo),然后過點(diǎn)A作AE_Lx軸于E,過點(diǎn)C作CF_Lx軸于F,設(shè)點(diǎn)C的
坐標(biāo)為(a,—),然后根據(jù)SAAOC=SACOF+S梯形ACFE-SAAOE列出方程求解即可得到
a
a的值,從而得解.
解答:解:...點(diǎn)B(?4,-2)在雙曲線y=上上,
x
-4
,k=8,
根據(jù)中心對稱性,點(diǎn)A、B關(guān)于原點(diǎn)對稱,
所以,A(4,2),
如圖,過點(diǎn)A作AEJ_x軸于E,過點(diǎn)C作CF_Lx軸于E設(shè)點(diǎn)C的坐標(biāo)為(a,2),
a
則SAAOC=SACOF+S梯形ACFE-SAAOE,
=-1x8+—x(2+—)(4-a)--x8?
22a2
2
d4.16-a.
a
16-a2
=-------,
a
,/△AOC的面積為6,
a
整理得,a2+6a-16=0,
解得ai=2,az=-8(舍去),
三J,
a2
.??點(diǎn)C的坐標(biāo)為(2,4).
故答案為:(2,4).
點(diǎn)評:本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)系數(shù)的幾何意義,作輔助
線并表示出△ABC的面積是解題的關(guān)鍵.
三、解答題(本題共9小題,共88分.答題請用黑色墨水筆或黑色簽字筆直接在答題卡的
相應(yīng)位置上.解答時(shí)應(yīng)寫出必要的文字說明、證明過程或鹽酸步驟.)
\-2v=4①
19.(6分)(?遵義)解方程組I*c.
2x+y-3=0②
考點(diǎn):解二元一次方程組.
專題:計(jì)算題.
分析:由第一個(gè)方程得到x=2y+4,然后利用代入消元法其解即可.
解答:僅-2y=4①
[2x+y-3=0②’
由①得,x=2y+4③,
③代入②得2(2y+4)+y-3=0,
解得y=-1,
把y=-1代入③得,x=2x(-1)+4=2,
所以,方程組的解是['二2.
y=-1
點(diǎn)評:本題考查的是二元一次方程組的解法,方程組中未知數(shù)的系數(shù)較小時(shí)可用代入法,當(dāng)
未知數(shù)的系數(shù)相等或互為相反數(shù)時(shí)用加減消元法較簡單.
20.(8分)(?遵義)已知實(shí)數(shù)a滿足a?+2a-15=0,求?!?呷出?)的
a+1a2-1a2-2a+l
值.
考點(diǎn):分式的化簡求值.
分析:先把要求的式子進(jìn)行計(jì)算,先進(jìn)行因式分解,再把除法轉(zhuǎn)化成乘法,然后進(jìn)行約分,
得到一個(gè)最簡分式,最后把a(bǔ)2+2a-15:0進(jìn)行配方,得到一個(gè)a+1的值,再把它整體
代人即可求出答案.
解答:解:a+2:(a+1)(a+2)_1_a+2.
22-
a+1a-1a-2a+la+1(a+1)(a1)
(a-I)._1_1_2
22
(a+1)(a+2)a+1(a+2)(a+1)
?「a2+2a-15=0,
(a+1)2=16,
點(diǎn)評:此題考杳了分式的化簡求值,關(guān)鍵是掌握分式化簡的步驟,先進(jìn)行通分,再因式分解,
然后把除法轉(zhuǎn)化成乘法,最后約分;化簡求值題要將原式化為最簡后再代值.
21.(8分)(?遵義)我市某中學(xué)在創(chuàng)建“特色校園〃的活動中,將本校的辦學(xué)理念做成宣傳
牌(AB),放置在教學(xué)樓的頂部(如圖所示).小明在操場上的點(diǎn)D處,用1米高的測.角儀
CD,從點(diǎn)C測得宣傳牌的底部B的仰角為37。,然后向教學(xué)樓正方向走了4米到達(dá)點(diǎn)F處,
又從點(diǎn)E測得宣傳牌的頂部A的仰角為45。.已知教學(xué)樓高BM=17米,且點(diǎn)A,B,M在
同一直線上,求宣傳牌AB的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):立=1.73,sin370=0.60,
cos37°=0.81,ian37°=0.75;.
考點(diǎn):解直角三角形的應(yīng)用-仰角俯角問題.
分析:首先過點(diǎn)C作CN1AM于點(diǎn)N,則點(diǎn)C,E,N在同一直線上,設(shè)AB=x米,則AN=x+
(17-1)=x+16(米),則在RSAEN中,ZAEN=45\可得EN=AN==17,可得
tan/BCN二地=0.75,則可得方程:ULI/,解此方程即可求得答案.
CNx+204
解答:解:過點(diǎn)C作CN_LAM于點(diǎn)N,則點(diǎn)C,E,N在同一直線上,
設(shè)AB=x米,則AN=x+(17-1)=x+16(米),
在RtAAEN中,ZAEN=45°,
/.EN=AN==17,
tanZBCN=垂=0.75,
CN
.17-13
x+20
點(diǎn)評:此題考查了俯角的定義.注意能借助俯角構(gòu)造直角三角形并解直角三角形是解此題的
關(guān)鍵.
22.(10分)(?遵義)"校園安全”受到全社會的廣泛關(guān)注,某校政教處對部分學(xué)生及家長就
校園安全知識的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)杳,并繪制成如圖所示的兩幅統(tǒng)計(jì)圖,請根據(jù)
統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)參與調(diào)查的學(xué)生及家長共有人;
(2)在扇形統(tǒng)計(jì)圖中,“基本了解”所對應(yīng)的圓心角的度數(shù)是度.
(3)在條形統(tǒng)計(jì)圖中,“非常了解”所對應(yīng)的學(xué)生人數(shù)是人;
(4)若全校有1200名學(xué)生,請你估計(jì)對“校園安全〃知識達(dá)到“非常了解〃和“基本了解”的學(xué)
生共有多少人?
考點(diǎn):條形統(tǒng)計(jì)圖;用樣本估計(jì)總體;扇形統(tǒng)計(jì)圖.
分析:(1)根據(jù)參加調(diào)查的人中,不了解的占5%,人數(shù)是16+4=20人,據(jù)此即可求解;
(2)利用360。乘以對應(yīng)的比例即可求解;
(3)利用總?cè)藬?shù)減去其它的情況的人數(shù)即可求解;
(4)求得調(diào)查的學(xué)生總數(shù),則對“校園安全”知識達(dá)至『非常了解〃和“基本了解〃所占的
比例即可求得,利用求得的比例乘以1200即可得到.
解答:解:(1)參與調(diào)查的學(xué)生及家長總?cè)藬?shù)是:(16+4)+5%=400(人);
(2)基本了解的人數(shù)是:73+77=150(人),
則對應(yīng)的圓心角的底數(shù)是:36()x&=135。;
400
(3)“非常了解”所對應(yīng)的學(xué)生人數(shù)是:400-83-77-73-54-31-16-4=62:
(4)調(diào)查的學(xué)生的總?cè)藬?shù)是:62+73+54+16=205(人),
對“校園安全”知識達(dá)到“#常了解〃和“基本了解”的學(xué)生是62+73=135(人),
則全校有1200名學(xué)生中,達(dá)到"非常了解〃和"基本了解〃的學(xué)生是:1200x1焚=79()
205
(人).
點(diǎn)評:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中
得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇
形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.
23.(10分)(?遵義)一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余
都相同),其中有紅球2個(gè),籃球I個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率
為工
2
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請用"樹狀圖法〃或“列
表法",求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分(每次摸后放回),乙同學(xué)在?次摸球游戲
中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī),再摸一次,求乙同學(xué)三
次摸球所得分?jǐn)?shù)之和不低于10分的概率.
考點(diǎn):列表法與樹狀圖法:概率公式.
分析:(I)首先設(shè)口袋中黃球的個(gè)數(shù)為X個(gè),根據(jù)題意得:」_=工,解此方程即可求得
2+1+x2
答案;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出都
是紅球的情況,再利用概率公式即可求得答案;
(3)由若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于1。分的有3種情
況,且共有4種等可能的結(jié)果,直接利用概率公式求解即可求得答案.
解答:解:(1)設(shè)口袋中黃球的個(gè)數(shù)為x個(gè),
根據(jù)題意得:2_1
2+1+x
解得:x=l,
經(jīng)檢驗(yàn):x=l是原分式方程的解;
口袋中黃球的個(gè)數(shù)為1個(gè);
(2)畫樹狀圖得:
開始
紅藍(lán)黃紅藍(lán)黃紅紅黃仃仃藍(lán)
共有12種等可能的結(jié)果,兩次摸出都是紅球的有2種情況,
???兩次摸出都是紅球的概率為:旦工
126
(3)???摸到紅球得5分,摸到黃球得3分,而乙同學(xué)在一次摸球游戲中,第一次隨
機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,
???乙同學(xué)已經(jīng)得了7分,
???若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于1。分的有3種情況,
且共有4種等可能的結(jié)果:
???若隨機(jī),再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率為:旦
4
點(diǎn)評:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏
的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以
上完成的事件.注意概率二所求情況數(shù)與總情況數(shù)之比.
24.(10分)(?遵義)如圖,將一張矩形紙片ABCD沿直線MN折疊,使點(diǎn)C落在點(diǎn)A處,
點(diǎn)D落在點(diǎn)E處,直線MN交BC于點(diǎn)M,交AD于點(diǎn)N.
(1)求證:CM=CN;
(2)若ACMN的面積與ACDN的面積比為3:1,求她的值.
DN
考點(diǎn):矩形的性質(zhì);勾股定理;翻折變換(折疊問題).
分析:(1)由折疊的性質(zhì)可得:NANM:/CNM,由匹邊形ABCD是矩形,可得
ZANM=ZCMN,則可證得/CMN=NCNM,繼而可得CM二CN;
(2)首先過點(diǎn)N作NHJ_BC于點(diǎn)H,由ACMN的面積與ACDN的面積比為3:1,
易得MC=3ND=3HC,然后設(shè)DN二N的長,繼而求得答案.
解答:(I)證明:由折疊的性質(zhì)可得:ZANM=ZCNM,
?「四邊形ABCD是矩形,
/.ADIIBC,
/.ZANM=ZCMN.
NCMN=NCNM,
/.CM=CN;
(2)ft?:過點(diǎn)N作NH_LBC于點(diǎn)H,
則四邊形NHCD是矩形,
/.HC=DN,NH=DC,
?「△CMN的面積與乙CDN的面積比為3:1,
c]?MC?NH
b
..ACO_2_______MC_3
,△CDN£?DN?NH而
/.MC=3ND=3HC,
MH=2HC,
設(shè)DN=H=2x,
...CM=3x=CN,
在RsCDN中,DC=JcM-DN2=2V2N=VMH2+HN2=2,
叫逅=2加.
DNX
點(diǎn)評:此題考杳了矩形的性質(zhì)、折疊的性質(zhì)、勾股定理以及三角形的面積.此題難度適中,
注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
25.(10分)(?遵義)4月20日,四川雅安發(fā)生7.0級地震,給雅安人民的生命財(cái)產(chǎn)帶來巨
大損失.某市民政部門將租用甲、乙兩種貨車共16輛,把糧食266噸、副食品169噸全部
運(yùn)到災(zāi)區(qū).已知一輛甲種貨車同時(shí)可裝糧食18噸、副食品10噸;一輛乙種貨車同時(shí)可裝糧
食16噸、副食11噸.
(1)若將這批貨物一次性運(yùn)到災(zāi)區(qū),有哪幾種租車方案?
(2)若甲種貨車每輛需付燃油費(fèi)1500元:乙種貨車每輛需付燃油費(fèi)1200元,應(yīng)選(1)中
的哪種方案,才能使所付的費(fèi)用最少?最少費(fèi)用是多少元?
考點(diǎn):一次函數(shù)的應(yīng)用;一元一次不等式組的應(yīng)用.
分析:(1)設(shè)租用甲種貨車x輛,表示出租用乙種貨車為(16-x)輛,然后根據(jù)裝運(yùn)的糧
食和副食品數(shù)不少于所需要運(yùn)送的噸數(shù)列出一元一次不等式組,求解后再根據(jù)x是正
整數(shù)設(shè)計(jì)租車方案;
(2)方法一:根據(jù)所付的費(fèi)用等于兩種車輛的燃油費(fèi)之和列式整理,再根據(jù)一次函
數(shù)的增減性求出費(fèi)用的最小值;
方法二:分別求出三種方案的燃油費(fèi)用,比較即可得解.
解答:解:(1)設(shè)租用甲種貨車x輛,租用乙種貨車為(16-x)輛,
18x+16(16-x)》266①
根據(jù)題意得,
10x+ll(16-x)>169②
由①得,x>5,
由②得,x<7,
所以,5<x<7,
x為正整數(shù),
x=5或6或7,
因此,有3種租車方案:
方案一:組甲種貨車5輛,乙種貨車11輛:
方案二:組甲種貨車6輛,乙種貨車10輛;
方案三:組甲種貨車7輛,乙種貨車9輛;
(2)方法一:由(1)知,租用甲種貨車x輛,租用乙種貨車為(16-x)輛,設(shè)兩
種貨車燃油總費(fèi)用為y元,
由題意得,y=1500x+1200(16-x),
=3OOx+192OO,
300>0,
二.當(dāng)x=5時(shí),y有最小值,
y坡小=300x5+19200=0元:
方法二:當(dāng)x=5時(shí),16-5=11,
5x1500+11x1200=07E;
當(dāng)x=6時(shí),16-6=10,
6x1500+10x1200=21000%;
當(dāng)x=7時(shí),16-7=9,
7x1500+9x1200=213007C;
答:選擇(1)中的方案一租車,才能使所付的費(fèi)用最少,最少費(fèi)用是。元.
點(diǎn)評:本題考查了一次函數(shù)的應(yīng)用,一元一次不等式組的應(yīng)用,讀懂題目信息,找出題中不
等量關(guān)系,列出不等式組是解題的關(guān)鍵.
26.(12分)(?遵義)如圖,在RSABC中,ZC=90°,AC=4cm,BC=3cm.動點(diǎn)M,N
從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動,同時(shí)動點(diǎn)P從
點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動,連接PM,PN,設(shè)移動時(shí)間為t(單位:
秒,0VtU2.5).
(1)當(dāng)I為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面枳S有最小值?若存在,求S的最小值;
若不存在,請說明理由.
考點(diǎn):相似形綜合題.
分析:根據(jù)勾股定理求得AB=5cm.
(1)分類討論:△AMP~△ABC和^APMs△ABC兩種情況.利用相似三角形的
對應(yīng)邊成比例來求I的值;
(2)如圖,過點(diǎn)P作PH_LBC于點(diǎn)H,構(gòu)造平行線PHIIAC,由平行線分線段成比
例求得以t表示的PH的值;然后根據(jù)"S=SAABC-SABPH"列出S與t的關(guān)系式S=-^(t
5
-£)2+且(0<t<2.5),則由二次函數(shù)最值的求法即可得到S的最小值.
25
解答:解:二?如圖,在RSABC中,zC=90°,AC=4cm,BC=3cm.
「?根據(jù)勾股定理,得〃c2+Bc2=5cm.
(1)以A,P,M為頂點(diǎn)的三角形與△ABC相似,分兩種情況:
①當(dāng)AAMP-△ARC時(shí).里網(wǎng).即5-2t=
ACAB45
解得
2
②當(dāng)△APM-△ABC時(shí),里起,即4二工5—2t,
ACAB45
解得t=0(不合題意,舍去);
綜上所述,當(dāng)t二旦時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似;
2
(2)存在某一時(shí)刻3使四邊形APNC的面積S有最小值.理由如下:
假設(shè)存在某一時(shí)刻3便四邊形APNC的面積S有最小值.
如圖,過點(diǎn)P作PH_LBC于點(diǎn)H.則PHIIAC,
.且U逛,即PE_2t,
一菽瓦,-45,
PH="
5
S=SAABC-SABPH,
二1x3x4?lx(3-t)?3,
225
=J(t-J)2+&(0<t<2.5).
525
,/J>0,
5
「.S有最小值.
當(dāng)t=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- it試用期總結(jié)模版
- 通信系統(tǒng)集成與服務(wù)標(biāo)準(zhǔn)規(guī)定
- 建筑行業(yè)智慧工地管理系統(tǒng)建設(shè)方案
- 2025 房地產(chǎn)租賃居間合同
- 2025年標(biāo)準(zhǔn)店鋪?zhàn)赓U合同范本
- 全國教育大會
- 酒店智慧客房服務(wù)及管理升級技術(shù)方案
- 2025年工程建設(shè)的勞務(wù)分包合同
- 電信行業(yè)智能化電話網(wǎng)絡(luò)方案
- 大學(xué)英語學(xué)習(xí)心得體會模版
- 學(xué)校信息化設(shè)備運(yùn)維服務(wù)方案
- 2025-2030中國奶茶店設(shè)備全套行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報(bào)告
- 2025年江蘇財(cái)經(jīng)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫附答案
- 2025年湖南省長沙市開福區(qū)審計(jì)局招聘4人歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 人教PEP版英語五年級下冊全冊教案
- 基礎(chǔ)護(hù)理學(xué)試題及標(biāo)準(zhǔn)答案
- 2025年四川成都市蒲江鄉(xiāng)村建設(shè)發(fā)展集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 2024版房產(chǎn)經(jīng)紀(jì)人無底薪勞動協(xié)議
- 2025年上半年度交通運(yùn)輸部南海航海保障中心公開招聘126人工作人員易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 社戒社康培訓(xùn)
- 船舶建造流程
評論
0/150
提交評論