![2025年滬教版高二數(shù)學(xué)上冊階段測試試卷含答案_第1頁](http://file4.renrendoc.com/view15/M00/0D/31/wKhkGWegRVKAac1-AAENqCV88Bk905.jpg)
![2025年滬教版高二數(shù)學(xué)上冊階段測試試卷含答案_第2頁](http://file4.renrendoc.com/view15/M00/0D/31/wKhkGWegRVKAac1-AAENqCV88Bk9052.jpg)
![2025年滬教版高二數(shù)學(xué)上冊階段測試試卷含答案_第3頁](http://file4.renrendoc.com/view15/M00/0D/31/wKhkGWegRVKAac1-AAENqCV88Bk9053.jpg)
![2025年滬教版高二數(shù)學(xué)上冊階段測試試卷含答案_第4頁](http://file4.renrendoc.com/view15/M00/0D/31/wKhkGWegRVKAac1-AAENqCV88Bk9054.jpg)
![2025年滬教版高二數(shù)學(xué)上冊階段測試試卷含答案_第5頁](http://file4.renrendoc.com/view15/M00/0D/31/wKhkGWegRVKAac1-AAENqCV88Bk9055.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年滬教版高二數(shù)學(xué)上冊階段測試試卷含答案考試試卷考試范圍:全部知識點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共8題,共16分)1、已知拋物線的準(zhǔn)線與雙曲線交于A,B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),若為直角三角形,則雙曲線的離心率是A.B.C.2D.32、如圖是一正方體被過棱的中點(diǎn)M、N和頂點(diǎn)A、D截去兩個(gè)角后所得的幾何體,則該幾何體的主視圖(或稱正視圖)為3、己知為虛數(shù)單位,若(1-2i)(a+i)為純虛數(shù),則a的值等于()A.-6B.-2C.2D.64、【題文】已知實(shí)數(shù)滿足且目標(biāo)函數(shù)的最大值為6,最小值為1,其中的值為()A.1B.2C.3D.45、【題文】在等比數(shù)列中,若>0且則的值為A.2B.4C.6D.86、過x2+y2=10x內(nèi)一點(diǎn)(5,3)有n條弦,它們的長度構(gòu)成等差數(shù)列,最小弦長為數(shù)列首項(xiàng)a1,最長的弦長為數(shù)列的末項(xiàng)an,若公差d∈則n的取值范圍是()A.n=4B.5≤n≤7C.n>7D.n∈{正實(shí)數(shù)}7、下列函數(shù)中,定義在R上的增函數(shù)是()A.B.y=lg|x|C.D.8、已知命題P:n∈N,2n>1000,則P為()A.n∈N,2n≤1000B.n∈N,2n>1000C.n∈N,2n≤1000D.n∈N,2n<1000評卷人得分二、填空題(共9題,共18分)9、線性相關(guān)的兩個(gè)變量x、y的對應(yīng)值如表1所示,其線性回歸方程是y=bx+0.1,當(dāng)x=6時(shí),y的估計(jì)值是____.
。表1x12345y2378910、若函數(shù)在區(qū)間(2,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是____.11、【題文】已知等比數(shù)列{an}的首項(xiàng)為2,公比為2,則=____.12、【題文】圓內(nèi)一點(diǎn)P(3,0),則過點(diǎn)P的最短弦所在直線方程為________.13、【題文】向量向量則實(shí)數(shù)k等于____14、已知正四棱柱(底面是正方形,側(cè)棱垂直于底面)的高為4,體積為16,八個(gè)頂點(diǎn)都在一個(gè)球面上,則這個(gè)球的表面積是____.15、不等式2x2-2axy+y2≥0對任意x∈[1,2]及任意y∈[1,4]恒成立,則實(shí)數(shù)a取值范圍是______.16、在用反證法證明“已知p3+q3=2,求證:p+q≤2”時(shí)的反設(shè)為______,得出的矛盾為______.17、已知mn
表示不同的直線婁脕婁脗
表示不同的平面,則下列命題中真命題的序號______
壟脵
若m隆脥婁脕n隆脥婁脕
則m//n壟脷
若m隆脥nn隆脥婁脕
則m//婁脕
壟脹
若m隆脥婁脕m隆脥婁脗
則婁脕//婁脗
評卷人得分三、作圖題(共9題,共18分)18、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
19、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最小.(如圖所示)20、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)21、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
22、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)23、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)24、分別畫一個(gè)三棱錐和一個(gè)四棱臺.評卷人得分四、計(jì)算題(共2題,共20分)25、如圖,正三角形ABC的邊長為2,M是BC邊上的中點(diǎn),P是AC邊上的一個(gè)動(dòng)點(diǎn),求PB+PM的最小值.26、1.(本小題滿分12分)已知函數(shù)在處取得極值.(1)求實(shí)數(shù)a的值;(2)若關(guān)于x的方程在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;(3)證明:(參考數(shù)據(jù):ln2≈0.6931).評卷人得分五、綜合題(共3題,共12分)27、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過AB,C三點(diǎn)的拋物的對稱軸為直線l,D為對稱軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;
②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.28、(2009?新洲區(qū)校級模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個(gè)分支,點(diǎn)P是這條曲線上任意一點(diǎn),它的坐標(biāo)是(a、b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點(diǎn)E、F.則AF?BE=____.29、已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,S3=0.參考答案一、選擇題(共8題,共16分)1、B【分析】試題分析:拋物線的準(zhǔn)線方程設(shè)焦點(diǎn)由于為直角三角形,所以得考點(diǎn):雙曲線的離心率.【解析】【答案】B2、B【分析】【解析】試題分析:由直觀圖可知正視圖為正方形,點(diǎn)M投影到了中點(diǎn)處,A投影到了D,B投影到了C,的投影是正方形對角線考點(diǎn):三視圖【解析】【答案】B3、B【分析】【解析】【答案】B4、B【分析】【解析】
試題分析:本題為線性規(guī)劃含有帶參數(shù)直線問題.需要對含參直線的斜率以及b進(jìn)行討論.另外借助選項(xiàng),觀察4個(gè)選項(xiàng)都是正數(shù),所以這樣可以減少討論情況.利用現(xiàn)行約束條件作出可行域.
當(dāng)討論(ⅰ):若無論我們都可以作圖,若則表示虛線下方無最大值不合題意.所以建立方程組和分別代入目標(biāo)函數(shù)可以得出(ⅱ):同理當(dāng)時(shí),結(jié)合圖像仍然會得如上的方程組.所以所以答案為D.
考點(diǎn):線性規(guī)劃、分類討論思.【解析】【答案】B5、D【分析】【解析】略【解析】【答案】D6、B【分析】【解答】解:設(shè)A(5;3),圓心O(5,0);
最短弦為垂直O(jiān)A的弦,a1=8,最長弦為直徑:an=10;
公差d=
∴≤≤
∴5≤n≤7;
故選B.
【分析】根據(jù)題意可知,最短弦為垂直O(jiān)A的弦,a1=8,最長弦為直徑:an=10,由等差數(shù)列的性質(zhì)可以求出公差d的取值范圍.7、C【分析】【解答】解:對于A,函數(shù)y=x﹣的定義域是{x|x≠0};不滿足題意;
對于B;函數(shù)y=lg|x|的定義域是{x|x≠0},不滿足題意;
對于C,函數(shù)y=是定義域R上的增函數(shù);滿足題意;
對于D,函數(shù)y==|x|在定義域R上不是單調(diào)函數(shù);不滿足題意.
故選:C.
【分析】根據(jù)題意,對選項(xiàng)中函數(shù)的定義域和單調(diào)性進(jìn)行判斷即可.8、A【分析】【分析】利用含量詞的命題的否定形式:將“任意”與“存在”互換;結(jié)論否定;寫出命題的否定.
【解答】∵命題p:?n∈N,2n>1000;
則¬p為?n∈N,2n≤1000
故選A
【點(diǎn)評】本題考查含量詞的命題的否定形式:將“任意”與“存在”互換;結(jié)論否定即可.二、填空題(共9題,共18分)9、略
【分析】
∵==3,==5.8;
∴這組數(shù)據(jù)的樣本中心點(diǎn)是(3;5.8)
∴把樣本中心點(diǎn)代入得5.8=3b+0.1;
∴b=1.9.
∴線性回歸方程是y=1.9x+0.1;
當(dāng)x=6時(shí);y=11.5.
故答案為:11.5
【解析】【答案】先求出x和y的平均數(shù),寫出樣本中心點(diǎn),根據(jù)所給的線性回歸方程,把樣本中心點(diǎn)代入求出b的值;再代入數(shù)值進(jìn)行預(yù)報(bào).
10、略
【分析】
根據(jù)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系,函數(shù)在區(qū)間(2;+∞)上單調(diào)遞增,只需f′(x)≥0在區(qū)間[2,+∞)上恒成立.
由導(dǎo)數(shù)的運(yùn)算法則,
即得m≤2x3,m只需小于等于2x3的最小值即可;由x>2,∴m≤16
故答案為(-∞;16]
【解析】【答案】根據(jù)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系,函數(shù)在區(qū)間(2;+∞)上單調(diào)遞增,只需f′(x)≥0在區(qū)間[2,+∞)上恒成立,考慮用分離參數(shù)法求解.
11、略
【分析】【解析】由題意知an=2n,
所以==
=22=4.【解析】【答案】412、略
【分析】【解析】
試題分析:設(shè)圓心為過點(diǎn)最短弦所在的直線為垂直于的直線,因?yàn)橹本€斜率為所以所求直線的斜率為從而直線方程為
考點(diǎn):直線的方程.【解析】【答案】13、略
【分析】【解析】【解析】【答案】K=-114、24π【分析】【解答】解:正四棱柱高為4,體積為16,底面積為4,正方形邊長為2,正四棱柱的對角線長即球的直徑為2
∴球的半徑為球的表面積是24π;
故答案為:24π
【分析】先求正四棱柱的底面邊長,然后求其對角線,就是球的直徑,再求其表面積.15、略
【分析】解:依題意,不等式2x2-2axy+y2≤0等價(jià)為2a≤=+
設(shè)t=
∵x∈[1;2]及y∈[1,4];
∴≤≤1,即≤≤4;
∴≤t≤4;
則+=t+
∵t+≥2=2
當(dāng)且僅當(dāng)t=即t=∈[4]時(shí)取等號.
∴2a≤2
即a≤
故答案為:(-∞,].
不等式等價(jià)變化為2a≤=+由x∈[1,2]及y∈[1,4],求得≤≤4,運(yùn)用基本不等式求得+的最小值即可.
本題主要考查不等式的應(yīng)用,將不等式恒成立轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵,注意運(yùn)用基本不等式,屬于中檔題.【解析】(-∞,]16、略
【分析】解:(1)用反證法證明時(shí);假設(shè)命題為假,應(yīng)為全面否定.
所以p+q≤2的假命題應(yīng)為p+q>2.
假設(shè)p+q>2;則p>2-q;
p3>(2-q)3;
p3+q3>8-12q+6q2;
∵p3+q3=2;
∴2>8-12q+6q2;
即q2-2q+1<0;
∴(q-1)2<0;
∵不論q為何值,(q-1)2都大于等于0;
即假設(shè)不成立;
∴p+q≤2.
故答案為p+q>2,(q-1)2<0
利用反證法與放縮法及其定義進(jìn)行分析求解.
此題主要考查反證法的定義及其應(yīng)用,是一道基礎(chǔ)題.【解析】p+q>2;(q-1)2<017、略
【分析】解:根據(jù)線面垂直的性質(zhì)“垂直于同一個(gè)平面的兩條直線平行”可知壟脵
正確;
若m隆脥nn隆脥婁脕
則m//婁脕
或m?婁脕
故壟脷
錯(cuò)誤;
若m隆脥婁脕m隆脥婁脗
則婁脕//婁脗
故壟脹
正確.
故答案為:壟脵壟脹
.
根據(jù)空間線面垂直與平行的判定與性質(zhì)進(jìn)行判斷.
本題考查了空間線面位置關(guān)系的判斷,屬于基礎(chǔ)題.【解析】壟脵壟脹
三、作圖題(共9題,共18分)18、略
【分析】【分析】根據(jù)軸對稱的性質(zhì)作出B點(diǎn)與河面的對稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
19、略
【分析】【分析】作出A關(guān)于OM的對稱點(diǎn)A',關(guān)于ON的A對稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對稱點(diǎn)A';關(guān)于ON的A對稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對稱;A與A″關(guān)于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.20、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最?。?/p>
理由是兩點(diǎn)之間,線段最短.21、略
【分析】【分析】根據(jù)軸對稱的性質(zhì)作出B點(diǎn)與河面的對稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
22、略
【分析】【分析】作出A關(guān)于OM的對稱點(diǎn)A',關(guān)于ON的A對稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對稱點(diǎn)A';關(guān)于ON的A對稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對稱;A與A″關(guān)于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.23、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最?。?/p>
理由是兩點(diǎn)之間,線段最短.24、解:畫三棱錐可分三步完成。
第一步:畫底面﹣﹣畫一個(gè)三角形;
第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);
第三步:畫側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).
畫四棱可分三步完成。
第一步:畫一個(gè)四棱錐;
第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對應(yīng)線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫三棱錐和畫四棱臺都是需要先畫底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫四棱臺時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、計(jì)算題(共2題,共20分)25、略
【分析】【分析】作點(diǎn)B關(guān)于AC的對稱點(diǎn)E,連接EP、EB、EM、EC,則PB+PM=PE+PM,因此EM的長就是PB+PM的最小值.【解析】【解答】解:如圖;作點(diǎn)B關(guān)于AC的對稱點(diǎn)E,連接EP;EB、EM、EC;
則PB+PM=PE+PM;
因此EM的長就是PB+PM的最小值.
從點(diǎn)M作MF⊥BE;垂足為F;
因?yàn)锽C=2;
所以BM=1,BE=2=2.
因?yàn)椤螹BF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.26、略
【分析】【解析】
(1)f'(x)=1+,由題意,得f'(1)=0Ta=02分(2)由(1)知f(x)=x-lnx∴f(x)+2x=x2+bóx-lnx+2x=x2+bóx2-3x+lnx+b=0設(shè)g(x)=x2-3x+lnx+b(x>0)則g'(x)=2x-3+=4分當(dāng)x變化時(shí),g'(x),g(x)的變化情況如下表。x(0,)(,1)1(1,2)2g'(x)+0-0+G(x)↗極大值↘極小值↗b-2+ln2當(dāng)x=1時(shí),g(x)最小值=g(1)=b-2,g()=b--ln2,g(2)=b-2+ln2∵方程f(x)+2x=x2+b在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根高考+資-源-網(wǎng)由TT+ln2≤b≤28分(3)∵k-f(k)=lnk∴nk=2ó(n∈N,n≥2)設(shè)Φ(x)=lnx-(x2-1)則Φ'(x)=-=當(dāng)x≥2時(shí),Φ'(x)<0T函數(shù)Φ(x)在[2,+∞)上是減函數(shù),∴Φ(x)≤Φ(2)=ln2-<0Tlnx<(x2-1)∴當(dāng)x≥2時(shí),∴>2[(1-)+(-)+(-)+(-)+()]=2(1+-)=.∴原不等式成立.12分'【解析】【答案】(1)a=0(2)+ln2≤b≤2(3)原不等式成立.五、綜合題(共3題,共12分)27、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);
設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).
(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:
(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點(diǎn)D.
∵點(diǎn)B與點(diǎn)A關(guān)于直線l對稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點(diǎn)之間;線段最短”的原理可知:
此時(shí)AD+CD最??;點(diǎn)D的位置即為所求.(5分)
設(shè)直線BC的解析式為y=kx+b;
由直線BC過點(diǎn)(3;0),(0,3);
得
解這個(gè)方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對稱軸l為;即x=1.
將x=1代入y=-x+3;得y=-1+3=2.
∴點(diǎn)D的坐標(biāo)為(1;2).(7分)
說明:用相似三角形或三角函數(shù)求點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 構(gòu)建高情商的職場溝通方式
- 環(huán)境因素對結(jié)構(gòu)動(dòng)力學(xué)的長期影響分析
- 2024-2025學(xué)年高中生物 第三章 遺傳的分子基礎(chǔ) 第四節(jié) 遺傳信息的表達(dá)和蛋白質(zhì)的合成說課稿3 浙科版必修2
- 2023二年級數(shù)學(xué)上冊 2 100以內(nèi)的加法和減法(二)1加法第3課時(shí) 進(jìn)位加說課稿 新人教版
- 七年級地理下冊 第十章 極地地區(qū)說課稿1 (新版)新人教版
- 2023六年級語文下冊 第六單元 難忘小學(xué)生活-中期交流與指導(dǎo)配套說課稿 新人教版
- 2024-2025學(xué)年新教材高中化學(xué) 第4章 化學(xué)反應(yīng)與電能 第1節(jié) 第2課時(shí) 化學(xué)電源說課稿 新人教版選擇性必修第一冊
- 生態(tài)農(nóng)業(yè)與現(xiàn)代科技結(jié)合的商業(yè)模式創(chuàng)新
- 現(xiàn)代企業(yè)管理中的危機(jī)預(yù)警機(jī)制
- 校園網(wǎng)絡(luò)的智能化改造及網(wǎng)絡(luò)安全對策
- 2025大連機(jī)場招聘109人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2025-2030年中國電動(dòng)高爾夫球車市場運(yùn)行狀況及未來發(fā)展趨勢分析報(bào)告
- 物流中心原材料入庫流程
- 河南省濮陽市2024-2025學(xué)年高一上學(xué)期1月期末考試語文試題(含答案)
- 長沙市2025屆中考生物押題試卷含解析
- 2024年08月北京中信銀行北京分行社會招考(826)筆試歷年參考題庫附帶答案詳解
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及答案解析
- 文藝美學(xué)課件
- 中藥炮制學(xué)教材
- 常見腫瘤AJCC分期手冊第八版(中文版)
- 電氣第一種第二種工作票講解pptx課件
評論
0/150
提交評論