




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Workshop:
HowtoSelecttheRightDesignandTechnologiestoDeriskAI
AndrewWallsAvivahLitan
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.Thispublicationmaynotbereproducedordistributedinanyform
withoutGartner'spriorwrittenpermission.ItconsistsoftheopinionsofGartner'sresearchorganization,whichshouldnotbeconstruedasstatementsoffact.Whiletheinformationcontainedinthispublicationhasbeenobtainedfromsourcesbelievedtobereliable,Gartnerdisclaimsallwarrantiesastotheaccuracy,completenessoradequacyofsuchinformation.AlthoughGartnerresearchmayaddresslegalandfinancialissues,Gartnerdoesnotprovidelegalorinvestmentadviceanditsresearchshouldnotbeconstruedorusedassuch.Youraccessanduseofthispublicationaregovernedby
Gartner’sUsagePolicy
.Gartnerpridesitselfonitsreputationforindependenceandobjectivity.Itsresearchisproducedindependentlybyitsresearchorganizationwithoutinputor
influencefromanythirdparty.Forfurtherinformation,see"
GuidingPrinciplesonIndependenceandObjectivity
."
TheWorkshop’sGoal
?We’reheretogetyouthinkingaboutthegovernance,designandtechnologyconsiderationstoderiskAIsolutions.
?You’llidentify:
—ThedifferenttypesofrisksassociatedwithAI.
—Mitigationapproaches—people,processesandtechnologies.—ApplythederiskingapproachtothreedifferentAIusecases.
?Willsplitintogroupsforexercisesandregrouptosharefindings.
2?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
AgendaandTiming
FullRoom
TableGroups
Timing
Introduction—Goal
3Minutes
DeriskingAIFramework
5Minutes
HowtoUseLabMaterials
5Minutes
LabExerciseNo.1
15Minutes
FindingsDiscussion
10Minutes
LabExerciseNo.2
15Minutes
FindingsDiscussion
10Minutes
LabExerciseNo.3
15Minutes
FindingsDiscussion
10Minutes
Closing
2Minutes
3?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
Artificialintelligence(AI)appliesadvancedanalysisandlogic-basedtechniques,including
machinelearning,tointerpretevents,supportandautomatedecisions,andtotakeactions.
4?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
RiskCategories
Standard
Compliance
?Regulatory
?Contract
Performance
Reputation
?Brand
?Failure
Operational
?SolutionOversight
?OmbudsmanProcess
Safety
?HarmtoHumans
?DamagetoProperty
Financial
?Fines
?LostRevenue
AI-Specific
Bias&Fairness
?SelectionBias
?Information
Privacy
?DataProtection
?Identity
Model&DataDrift
?UnanticipatedData
?UnanticipatedEvents
Explainability
?Transparency
?“BlackBox”
Security
?Sabotage
?DataPoisoning
5?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
Gartner’sAITRiSMFramework
AITrust,RiskandSecurityManagementPillars
Source:Gartner750738_C
6?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
AIDeriskingApproach
UseCase:
?Whatproblemarewesolving?
?Isthebenefitworththepotentialcost/risks?Isitfeasible?Isitethical?
Environment:
?WilltheAImakeautomateddecisions?Orwillahumanbeintheloop?
?WilltheAIneedtoworkinday/nightconditionsorpoorweather?Orremoteplaces(space,ocean)?
Risks:
?WhatarethedifferentpotentialrisksoftheAIsolution?Reputation,legal,compliance,financial,technology,securityorhumanimpact(physical/psychological)?
?Didweconsultwithrepresentativesofinvolvedandaffectedgroups(users,citizens,legal,etc.)?
AITechnologies:
?WhatAItechnologiesarerequired?Whatpotentialrisksdotheypose?E.g.,facialrecognition?
Mitigation/Controls:
?Whatarethedifferentmechanismstomitigaterisks?People,process,technology?
7?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
LabExercises
?Breakintogroups;eachgroupwillworkonallthreeusecases:—ObjectiveistofillintheAIderiskinganddesigntemplates.
—Willhave15minutestoworkoneachusecase;willregroupintolargerteamtosharefindingsfor10minutesbetweeneachusecase.
?Labhandouts—onepacketforeachusecase:
—Use-caseoverview
—AIderiskingapproach
—AIderiskingdesigntemplate—AIcategories
—AITRiSMframework
8?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
WhatWeWillDoinThisWorkshop:
IdentifytheRisksandMitigationApproachesforThreeAIUseCases
AI-Powered
CodeDev
Tool
UseCaseNo.1
AI-Powered
Recruiting
Tool
UseCaseNo.2
AI-PoweredBoss
UseCaseNo.3
9?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
UseCaseNo.1—AI-PoweredCodeGeneration
?Generatingapplicationsistime-
consumingandrequiresspecializedskills.
?WouldliketouseAIto:
—Generatecodefornewapplications.
—Generatecodetocustomizeexistingapplications.
—Reviewhuman-generatedcodeforareasrequiringimprovementandgeneratepatches.
?AndusegenerativeAItowritejobdescriptionsfordevelopers.
10?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
UseCaseNo.2—AI-PoweredRecruitingTool
?Findingnewtalentistime-consuming—scanningresumesandinterviewing
candidates.
?WouldliketouseAIto:
—Automaticallystripsprotected
characteristics(race,nationality,religion,ethnicity,age)
tonegatebiasrecruitmentprocess.—Performinitialcandidateinterviews
usingvirtualHRrepresentatives.
—Determinerolesuitabilitybyanalyzingcandidatevoiceandvideoduring
interviews.
11?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
UseCaseNo.3—AI-PoweredBoss
?Middlemanagementoftenaddslittlevaluetothebottomlineofacompanybutdifficultforseniorexecutivesto
directlysupervisehundredsofemployees.
?WouldliketouseAIto:
—Replacehumanmanagerswithavirtualboss.
—Willinteractwithemployeestosetandtrackgoals,willmonitorwork
performanceandprovidefeedback.
12?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
ExampleUseCase—AIJaywalkingCatcher
?Studieshaveshownthatmany
pedestrianaccidentsmaybecausedbyfailureofthepedestriantofollowtrafficlaws.
?WouldliketouseAIto:
—Detectjaywalking,capturetheirfacesandautomaticallynotifyandfinethem.
—Detectnon-jaywalking,capturetheirfacesandautomaticallysend
notificationandreward.
13?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
AIDe-riskingApproach:Example
UseCase:AIJaywalkingCatcher
Environment:
Outdoorcamerasoperatingunderdifferentlightingconditionsthatlikelywouldincludeinclementweathersuchasrain,snow,fog,smog.Couldbelotsofpeopleandtraffic
onroadsandsidewalks.
TypesofRisks:
Inabilitytoaccuratelymatchjaywalkertophotoofpersonindatabase,biasesbased
onskincolor,citizenstrickingsystembywearingmasksoffamouspeople,costs
ofhandlingcomplaintsandpotentiallawsuits,unauthorizedaccesstophotodatabase.
AITechnologies:
Facialrecognition,computervisiontodetectjaywalkingvswalkingincrosswalk.
Mitigation/Controls:
Trainingdatasetrepresentativeofdifferentraces,skincolors,genders,ages;
humanreinforcementlearningandhumanconfirmationbeforesendingletterwithfine.
14?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
AILifeCycleRiskandMitigation:Example
DataSelection
ModelBuild
ModelMonitor
Environment
TrainModel,TestandDeploy
Risks
●Inaccuracyinconfirmingpersoninimage/video.
●Inabilitytodeterminewhetherpersonwasinside/outside
crosswalk.
Risks
●Systemperformswellin
labenvironmentbutnotinrealworld.
●Systemnoteconomicaltoscaletobeused
broadly.
Risks
●Modelaccuracydegrades.
●Sourcefacedatabasenotmaintained.
●Toomanyfalsepositives.
●Requirestoomuch
resourcestomaintain.
Risks
●Camerasareexposedtoweather.
●Cameravandalism.
●Signal
●distortion/interception.
●Camerarecalibration.
●Citizencomplaints.
Insufficientnighttimelightingforcameras.
Risks
●Biased/incompletetrainingdatasets.
●Improperdatastorageleadingtoprivacyandsecurityrisks.
Mitigation
●Useofprebuiltfacialrecognitionmodelwith
●99+%accuracy.
crosswalkandwalklightnotgreen.
●Addbusinessrules
requiringhumanconfirmation.
Detecthumanoutside
Mitigation
●Useofsimulationtotestsystemacrossdifferentspectrumofpeople
(races,genders,etc.)
●andtrafficscenarios.
withcamerapositionedonstreetwithhigh
reportsofjaywalking.
TestHW/SWsystem
Mitigation
●Exploreautomatedmodel
●retraining/replacement.
●withfacialinfo.
andprivacyprotected.
●Cost-benefitanalysis
beforeexpandedrollout.
Publicdocumentationofhowsystemoperates
Identifyotherdatabases
Mitigation
●Real-worldtestingof
systembeforesending●finestocitizens.
verification/confirmationbeforesendingletter
withfines.
●Communicationto
citizensnotifying
purposeofcameras.
Human
Mitigation
●Varietyofdatafromdifferentraces,skintones,genders,ages.
●Usesyntheticdatatofillinincompletedataandprovidedifferent
angles/lightingofpeopleandroads,crosswalks.
15?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.GartnerisaregisteredtrademarkofGartner,Inc.anditsaffiliates.
Recommendations
oFocusonAIusecasesthatprovidethebestROI:
thehighestcombinationofbusinessvalueandfeasibility.
oDevelopyourAI-enabledtool/processusingariskassessmentframework(e.g.,NISTAIRMF).
oIncludeadiversesetofreviewersattheprojectgateways:
e.g.,technology,bu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江警官職業(yè)學(xué)院《醫(yī)學(xué)信息檢索與利用(4)》2023-2024學(xué)年第二學(xué)期期末試卷
- 甘肅林業(yè)職業(yè)技術(shù)學(xué)院《鐵路旅客運(yùn)輸》2023-2024學(xué)年第二學(xué)期期末試卷
- 乘法-隊列表演(二)教學(xué)設(shè)計-2023-2024學(xué)年三年級下冊數(shù)學(xué)北師大版
- 一個時代歌者的赤子深情-名著導(dǎo)讀:《艾青詩選》如何讀詩(教學(xué)設(shè)計)九年級語文上冊同步高效課堂(統(tǒng)編版)
- 咸陽師范學(xué)院《專業(yè)新聞與深度報道》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧何氏醫(yī)學(xué)院《建筑室內(nèi)聲學(xué)設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 成都信息工程大學(xué)《高聚物合成工藝及設(shè)備》2023-2024學(xué)年第二學(xué)期期末試卷
- 泉州輕工職業(yè)學(xué)院《文化學(xué)導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷
- Unit 2 Were Family!Section B 2a-2b 教學(xué)設(shè)計2024-2025學(xué)年人教版(2024)七年級英語上冊
- 中山大學(xué)《黑白圖像》2023-2024學(xué)年第二學(xué)期期末試卷
- 唐詩中的中醫(yī)藥知識-PPT幻燈片
- 四川省瀘州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)
- 《鄒忌諷齊王納諫》課件(共45張)
- 機(jī)械制圖教學(xué)課件(全套)
- 熱能與動力工程測試技術(shù)- 液位測量
- 化學(xué)纖維精品課件
- 中式面點(diǎn)師初級(五級)教學(xué)計劃、大綱
- QC成果構(gòu)造柱澆筑新技術(shù)的研發(fā)創(chuàng)新(附圖)
- 2020 ACLS-PC-SA課前自我測試試題及答案
- BIM技術(shù)應(yīng)用管理辦法
- 信息論與編碼第4章信息率失真函數(shù)
評論
0/150
提交評論