2025年浙教新版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第1頁
2025年浙教新版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第2頁
2025年浙教新版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第3頁
2025年浙教新版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第4頁
2025年浙教新版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年浙教新版高二數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共6題,共12分)1、【題文】已知P是△ABC所在平面內(nèi)一點(diǎn),++2=0,現(xiàn)將一粒黃豆隨機(jī)撒在△ABC內(nèi),則黃豆落在△PBC內(nèi)的概率是()A.B.C.D.2、【題文】投擲一枚骰子;若事件A={點(diǎn)數(shù)小于5},事件B={點(diǎn)數(shù)大于2},則P(B|A)=()

A.B.C.D.3、【題文】過點(diǎn)(0,1)且與曲線在點(diǎn)處的切線垂直的直線的方程為A.B.C.D.4、等比數(shù)列{an}中,a2+a4=20,a3+a5=40,則a6=()A.16B.32C.64D.1285、若正四面體ABCD的棱長為1,則它的外接球體積為()A.πB.πC.πD.π6、拋物線x2=2y

和直線y=x+4

所圍成的封閉圖形的面積是(

)

A.16

B.18

C.20

D.22

評(píng)卷人得分二、填空題(共7題,共14分)7、一個(gè)均勻小正方體的6個(gè)面中,三個(gè)面上標(biāo)以數(shù)0,兩個(gè)面上標(biāo)以數(shù)1,一個(gè)面上標(biāo)以數(shù)2.將這個(gè)小正方體拋擲2次,則向上的數(shù)之和為2的概率是____.(答案用分?jǐn)?shù)表示)8、從0,1,2,3,4,5,6七個(gè)數(shù)字中,選出2個(gè)偶數(shù)和1個(gè)奇數(shù),組成無重復(fù)數(shù)字的三位數(shù),能被5整除的三位數(shù)有____個(gè).(用數(shù)字作答)9、定義集合運(yùn)算:A⊙B={z|z=xy(x+y),x∈A,y∈B}.設(shè)集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為____.10、已知數(shù)列(),若且則中是1的個(gè)數(shù)為____.11、【題文】已知的取值如下表所示:

。x

0

1

3

4

y

2.2

4.3

4.8

6.7

從散點(diǎn)圖分析,與線性相關(guān),且則____.12、【題文】在樣本的頻率分布直方圖中,一共有個(gè)小矩形,第3個(gè)小矩形的面積等于其余m-1個(gè)小矩形面積和的且樣本容量為100,則第3組的頻數(shù)是()。A.10B.25C.20D.4013、【題文】現(xiàn)有三枚外觀一致的硬幣,其中兩枚是均勻硬幣另一枚是不均勻的硬幣,這枚不均勻的硬幣拋出后正面出現(xiàn)的概率為現(xiàn)投擲這三枚硬幣各1次,設(shè)為得到的正面?zhèn)€數(shù),則隨機(jī)變量的數(shù)學(xué)期望=""▲.評(píng)卷人得分三、作圖題(共7題,共14分)14、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

15、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)16、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)17、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?

18、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長最小.(如圖所示)19、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)20、分別畫一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、解答題(共1題,共9分)21、在△ABC中,B(0)、C(-0),動(dòng)點(diǎn)A滿足sinB+sinC=sinA.

(1)求動(dòng)點(diǎn)A的軌跡D的方程;

(2)若點(diǎn)P(),經(jīng)過點(diǎn)P作一條直線l與軌跡D相交于點(diǎn)M,N,并且P為線段MN的中點(diǎn),求直線l的方程.評(píng)卷人得分五、計(jì)算題(共1題,共3分)22、1.(本小題滿分12分)已知投資某項(xiàng)目的利潤與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是.設(shè)該項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為對(duì)該項(xiàng)目每投資十萬元,取0、1、2時(shí),一年后相應(yīng)的利潤為1.6萬元、2萬元、2.4萬元.求投資該項(xiàng)目十萬元,一年后獲得利潤的數(shù)學(xué)期望及方差.評(píng)卷人得分六、綜合題(共4題,共28分)23、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過AB,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);

(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.

①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;

②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.24、(2009?新洲區(qū)校級(jí)模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個(gè)分支,點(diǎn)P是這條曲線上任意一點(diǎn),它的坐標(biāo)是(a、b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點(diǎn)E、F.則AF?BE=____.25、已知f(x)=﹣3x2+a(6﹣a)x+6.26、已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),,f(an)是首項(xiàng)為4,公差為2的等差數(shù)列.參考答案一、選擇題(共6題,共12分)1、D【分析】【解析】由題意可知,點(diǎn)P位于BC邊的中線的中點(diǎn)處.記黃豆落在△PBC內(nèi)為事件D,則P(D)==【解析】【答案】D2、D【分析】【解析】

試題分析:投擲一枚骰子;基本事件總數(shù)為6.

由公式及題意得,故選D.

考點(diǎn):條件概率。

點(diǎn)評(píng):簡(jiǎn)單題,利用條件概率的計(jì)算公式【解析】【答案】D3、A【分析】【解析】略【解析】【答案】A4、C【分析】解:∵等比數(shù)列{an}中,a2+a4=20,a3+a5=40;

∴解得a=2,q=2;

∴a6=2×25=64.

故選:C.

由等比數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出a6.

本題考查等比數(shù)列的第6項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.【解析】【答案】C5、A【分析】解:正四面體的棱長為:1,底面三角形的高:

棱錐的高為:=

設(shè)外接球半徑為x;

x2=(-x)2+()2,解得x=

所以棱長為1的正四面體的外接球的體積為=.

故選:A.

由正四面體的棱長;求出正四面體的高,設(shè)外接球半徑為x,利用勾股定理求出x的值,即可求出外接球體積.

本題考查球的內(nèi)接多面體的知識(shí),關(guān)鍵是明確球半徑與棱錐的高的關(guān)系,考查計(jì)算能力,邏輯思維能力,是中檔題.【解析】【答案】A6、B【分析】解:由方程組{2y=x2y=x+4

解得;x1=鈭?2x2=4

故所求圖形的面積為S=鈭?24(x+4鈭?12x2)dx

=(12x2+4x鈭?16x3)|鈭?24=18

故選B.

本題考查的知識(shí)點(diǎn)是定積分的幾何意義,首先我們要聯(lián)立兩個(gè)曲線的方程,判斷他們的交點(diǎn),以確定積分公式中x

的取值范圍,再根據(jù)定積分的幾何意義,所求圖形的面積為S=鈭?24(x+4鈭?12x2)dx

計(jì)算后即得答案.

在直角坐標(biāo)系下平面圖形的面積的四個(gè)步驟:1.

作圖象;2.

求交點(diǎn);3.

用定積分表示所求的面積;4.

微積分基本定理求定積分.【解析】B

二、填空題(共7題,共14分)7、略

【分析】

一個(gè)均勻小正方體的6個(gè)面中;三個(gè)面上標(biāo)以數(shù)0,兩個(gè)面上標(biāo)以數(shù)1,一個(gè)面上標(biāo)以數(shù)2.

將這個(gè)小正方體拋擲2次,向上的數(shù)之積ξ所以

故答案為

【解析】【答案】一個(gè)均勻小正方體的6個(gè)面中;三個(gè)面上標(biāo)以數(shù)0,兩個(gè)面上標(biāo)以數(shù)1,一個(gè)面上標(biāo)以數(shù)2.將這個(gè)骰子擲兩次得到向上的數(shù)之和為2有2種情況,利用古典概型的概率公式結(jié)合事件求出概率.

8、略

【分析】

因?yàn)榇巳粩?shù)能被5整除;

所以末位數(shù)是5或者是0.

當(dāng)末位數(shù)是0時(shí),再選擇一個(gè)偶數(shù)一個(gè)奇數(shù),則有C31C31=9種不同的選法,可得這樣的三位數(shù)共有9A22=18個(gè).

當(dāng)末位數(shù)是5時(shí);再選擇兩個(gè)偶數(shù),并且首位不能是0,所以首位有3種排法,而十位也有3種排法,所以可得這樣的三位數(shù)共有3×3=9個(gè);

由以上可得:能被5整除的三位數(shù)有18+9=27個(gè).

故答案為:27.

【解析】【答案】由題意可得:此三位數(shù)的末位數(shù)是5或者是0;再分別討論當(dāng)末位數(shù)是0時(shí)與當(dāng)末位數(shù)是5時(shí)的情況,然后求和得到答案.

9、略

【分析】【解析】試題分析:分類討論:①x=0,y=2或3時(shí),z=0;②x=1,y=2時(shí),z=1×2×(1+2)=6;③x=1,y=3時(shí),z=1×3×(1+3)=12.∴集合A⊙B={0,6,12}.∴0+6+12=18.故填18.考點(diǎn):本題考查了集合的新定義【解析】【答案】1810、略

【分析】【解析】試題分析:所以中是1的個(gè)數(shù)為考點(diǎn):本小題主要考查計(jì)數(shù)原理的應(yīng)用.【解析】【答案】3311、略

【分析】【解析】

試題分析:因?yàn)?,回歸直線方程經(jīng)過樣本中心點(diǎn)所以;

將代入得,2.6.

考點(diǎn):回歸直線方程。

點(diǎn)評(píng):簡(jiǎn)單題,回歸直線方程經(jīng)過樣本中心點(diǎn)【解析】【答案】2.612、略

【分析】【解析】設(shè)第三組的面積為x,其余的面積之和為4x,依題意x+4x=1,x=0.2第三組的頻率是0.2,頻數(shù)等于100*0.2=20【解析】【答案】C13、略

【分析】【解析】略【解析】【答案】三、作圖題(共7題,共14分)14、略

【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

15、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.16、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最小;

理由是兩點(diǎn)之間,線段最短.17、略

【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;

如圖所示;

由對(duì)稱的性質(zhì)可知AB′=AC+BC;

根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.

18、略

【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.

證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.19、略

【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;

這樣PA+PB最小;

理由是兩點(diǎn)之間,線段最短.20、解:畫三棱錐可分三步完成。

第一步:畫底面﹣﹣畫一個(gè)三角形;

第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);

第三步:畫側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).

畫四棱可分三步完成。

第一步:畫一個(gè)四棱錐;

第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對(duì)應(yīng)線段平行的線段;

第三步:將多余線段擦去.

【分析】【分析】畫三棱錐和畫四棱臺(tái)都是需要先畫底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開始,順次在各個(gè)面內(nèi)畫與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共1題,共9分)21、略

【分析】

(1)由題意利用橢圓的定義可得A點(diǎn)的軌跡是以B、C為焦點(diǎn)的橢圓(除去左右頂點(diǎn)),求得a=2,又c=可得b2=a2-c2的值;從而求得橢圓的標(biāo)準(zhǔn)方程.

(2)利用點(diǎn)差法以及韋達(dá)定理求得直線l的斜率;再用點(diǎn)斜式求得l的方程.

本題主要考查求點(diǎn)的軌跡方程的方法,橢圓的定義及標(biāo)準(zhǔn)方程,直線和圓錐曲線相交的性質(zhì),韋達(dá)定理的應(yīng)用,屬于中檔題.【解析】解:(1)△ABC中,B(0)、C(-0),動(dòng)點(diǎn)A滿足sinB+sinC=sinA;

利用正弦定理可得|AC|+|AB|=|BC|,即|AC|+|AB|=|BC|=4>|BC|;

∴A點(diǎn)的軌跡是以B;C為焦點(diǎn)的橢圓(除去左右頂點(diǎn));

∵2a=4,∴a=2,又c=∴b2=a2-c2=1;

故橢圓的標(biāo)準(zhǔn)方程為+y2=1.

(2)設(shè)M(x1,y1),N(x2,y2),則

兩方程相減得+-=0,即+(y1+y2)?(y1-y2)=0.

根據(jù)P()為線段MN的中點(diǎn),可得

∴+=0,∴KMN==-

所以,直線l的方程為y-=-(x-),即y=-x+.五、計(jì)算題(共1題,共3分)22、略

【分析】由題設(shè)得則的概率分布為4分。012P故收益的概率分布為。1.622.4P所以=28分12分【解析】【答案】=2六、綜合題(共4題,共28分)23、略

【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.

(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,∴AD=BD.

∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);

設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).

(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:

(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)

將(0;3)代入上式,得3=a(0+1)(0-3).

解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).

即y=-x2+2x+3.(3分)

(2)連接BC;交直線l于點(diǎn)D.

∵點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱;

∴AD=BD.(4分)

∴AD+CD=BD+CD=BC.

由“兩點(diǎn)之間;線段最短”的原理可知:

此時(shí)AD+CD最??;點(diǎn)D的位置即為所求.(5分)

設(shè)直線BC的解析式為y=kx+b;

由直線BC過點(diǎn)(3;0),(0,3);

解這個(gè)方程組,得

∴直線BC的解析式為y=-x+3.(6分)

由(1)知:對(duì)稱軸l為;即x=1.

將x=1代入y=-x+3;得y=-1+3=2.

∴點(diǎn)D的坐標(biāo)為(1;2).(7分)

說明:用相似三角形或三角函數(shù)求點(diǎn)D的坐標(biāo)也可;答案正確給(2分).

(3)①連接AD.設(shè)直線l與x軸的交點(diǎn)記為點(diǎn)E.

由(2)知:當(dāng)AD+CD最小時(shí);點(diǎn)D的坐標(biāo)為(1,2).

∴DE=AE=BE=2.

∴∠DAB=∠DBA=45度.(8分)

∴∠ADB=90度.

∴AD⊥BD.

∴BD與⊙A相切.(9分)

②∵另一點(diǎn)D與D(1;2)關(guān)于x軸對(duì)稱;

∴D(1,-2).(11分)24、略

【分析】【分析】根據(jù)OA=OB,得到△AOB是等腰直角三角形,則△NBF也是等腰直角三角形,由于P的縱坐標(biāo)是b,因而F點(diǎn)的縱坐標(biāo)是b,即FM=b,則得到AF=b,同理BE=a,根據(jù)(a,b)是函數(shù)y=的圖象上的點(diǎn),因而b=,ab=,則即可求出AF?BE.【解析】【解答】解:∵P的坐標(biāo)為(a,);且PN⊥OB,PM⊥OA;

∴N的坐標(biāo)為(0,);M點(diǎn)的坐標(biāo)為(a,0);

∴BN=1-;

在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);

∴NF=BN=1-;

∴F點(diǎn)的坐標(biāo)為(1-,);

∵OM=a;

∴AM=1-a;

∴EM=AM=1-a;

∴E點(diǎn)的坐標(biāo)為(a;1-a);

∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;

∴AF?BE=1.

故答案為:1.25、解:(Ⅰ)∵f(x)=﹣3x2+a(6﹣a)x+6;f(1)>0

∴﹣3+a(6﹣a)+6>0

∴a2﹣6a﹣3<0

∴{#mathml#}3-23<a<3+23

{#/mathml#}

∴不等式的解集為{#mathml#}a|3-23<a<3+23

{#/mathml#}

(Ⅱ)∵不等式f(x)>b的解集為(﹣1,3),

∴﹣3x2+a(6﹣a)x+6>b的解集為(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論