




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
FinanceResearchLetters72(2025)106519
Contentslistsavailableat
ScienceDirect
FinanceResearchLetters
journalhomepage:
/locate/frl
Fuelingfinancialdevelopment:ThecrucialroleofgenerativeAIfinancingacrossnations
AbuBakkarSiddik
a
,YongLi
a
,AnnaMinDu
b
,*
,MilenaMigliavacca
c
aSchoolofManagement,UniversityofScienceandTechnologyofChina,Hefei,PRChinabTheBusinessSchool,EdinburghNapierUniversity,Edinburgh,UnitedKingdom
cDepartmentofEconomicsandBusinessAdministration,Universita、CattolicadelSacroCuore,Italy
ARTICLEINFO
ABSTRACT
JELClassifications:
O33G21C33L86D83
Keywords:
GAIfinancing
FinancialdevelopmentPublicityexposure
Cross-sectionalanalysis
ThisstudyexaminestheimpactofGenerativeAI(GAI)financingonfinancialdevelopment(FD)across21countriesusingcross-sectionaldatafrom2020to2022.Employingbothsimplelinearregressionandtwo-stageleastsquares(2SLS)toaddressendogeneity,wefindthatGAIfinancingsignificantlycontributestofinancialdevelopment,withstrongereffectsobservedinAsianandnon-Europeanregions.Regionalheterogeneityisevident,highlightingvaryingimpactsacrossdifferentsubcontinents.PolicyimplicationssuggestpromotingGAIecosystems,attractingforeigninvestment,andenhancingpublicityforGAIstartups.ThestudyhighlightstheneedforfutureresearchontheethicalimplicationsanddynamiceffectsofGAIfinancing.
1.Introduction
TheriseofGenerativeArtificialIntelligence(GAI)hasrevolutionizedvariousindustries(
DowlingandLucey,2023
;
Dwivedietal.,
2023
;
Siddiketal.,2024
),transformingthewaybusinessesoperateandimpactingbroadereconomicsystems.AsasubsetofAI,GAIusesmachinelearningmodelstogeneratecontent,includingtext,images,andvideos,mimickinghumancreativityandintelligence(
Chakrabortyetal.,2024
;
Dwivedietal.,2023
;
HermannandPuntoni,2024
).Inrecentyears,GAIfinancing,thefundingallocatedtoGAIstartupsandprojects,hasrapidlyexpandedasinvestorsrecognizethedisruptivepotentialofthesetechnologies.Duringarapidemergence,GAIstartupshaveattractedhugefundingfrominvestors,withover$25Binfunding
1in2023alone.However,thelink
betweenGAIfinancingandfinancialdevelopment(FD),particularlyatamacroeconomiclevel,remainsunderexplored.ThisstudyseekstobridgethisgapbyanalyzinghowGAIfinancinginfluencesfinancialdevelopmentacrossdifferentcountriesandregions.
Financialdevelopmentreferstothegrowthandmaturityoffinancialinstitutionsandmarkets,characterizedbyimprovedaccess,efficiency,anddepth(
AsteriouandSpanos,2019
;
MeniagoandAsongu,2018
;
Nasreenetal.,2020
).Theliteratureonfinancialdevelopmenttypicallyfocusesontraditionalsectors,includingbanking,microfinance,andequitymarkets(
Ashraf,2018
;
Bannaetal.,
2022
;
Mhadhbietal.,2021
;
WuandBowe,2010
).However,theadventofdisruptivetechnologieslikeGAIisreshapingthefinanciallandscape(
Ardekanietal.,2024
;
DowlingandLucey,2023
;
Dwivedietal.,2023
),necessitatingacloserexaminationofhowsuch
*Correspondingauthor.
E-mailaddresses:
ls190309@
,
absiddik.nub@
(A.B.Siddik),
yonglee@
(Y.Li),
a.du@napier.ac.uk
(A.M.Du),
milena.migliavacca@unicatt.it
(M.Migliavacca).
1Retrievedfrom
https://dealroom.co/guides/generative-ai
/10.1016/j.frl.2024.106519
Received6October2024;Receivedinrevisedform14November2024;Accepted24November2024Availableonline26November2024
1544-6123/?2024TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense
(/licenses/by-nc-nd/4.0/
).
A.B.Siddiketal.FinanceResearchLetters72(2025)106519
2
innovationsdrivefinancialgrowth.GAIhasthepotentialtorevolutionizefinancialservices,improvedecision-makingprocesses,andenhancemarketefficiency.Yet,despiteitsgrowingprominence,researchontherelationshipbetweenGAIfinancingandfinancialdevelopmentremainslimited.
Intherapidlyevolvingfinancesector,digitaltechnologiesarereshapingtraditionalmodelsanddrivingimpactfulinnovation.Frommobilebankinganddigitalwalletstofintechandrobo-advisors,digitalfinancehastransformedconsumerbehaviorandredefinedfinancialsystemsglobally(
Congetal.,2024
).AgrowingbodyofresearchemphasizesAI’stransformativepotential:
Ardekanietal.
(2024)
introducedFinSentGPT,asentimentanalysismodelsurpassingtraditionalmethods,while
Panetal.(2024)
demonstratedAI’sroleinstrengtheningregulatoryoversight.
Daníelssonetal.(2022)
alsohighlightAI’spotentialrisks,suchasamplifyingsystemicvulnerabilitiesdespiteitsefficiencies.(
Siddiketal.,2024
)foundthatinvestorinfluencesignificantlyenhancesfundingforGAIstartups,whiletechnologicalinfluenceislimited,underscoringtheimportanceofinvestornetworksinsupportingGAIexpansion.AlthoughthesestudiesillustrateAI’sbroadimpact,theydonotspecificallyaddressGAIfinancing’sroleinadvancingfinancialdevelopment.
DespiteextensiveresearchonAI’simpactonfinancialsystems(
Ardekanietal.,2024
;
Panetal.,2024
;
Sachanetal.,2024
),agapremainsinunderstandinghowGAIfinancingcontributestomacro-levelfinancialdevelopment.MoststudiesfocusonAI’stechnicalapplications,butfewexaminehowthefundingofGAIstartupsaffectsbroaderfinancialgrowth,particularlyindevelopingregions.AsGAItechnologiesbecomeincreasinglyintegratedintofinancialservices(
AlmeidaandGon?alves,2024
;
DowlingandLucey,2023
;
Dwivedietal.,2023
),itisessentialtoassesstheireconomicimpact,especiallyregardingfinancialsystemgrowthandmaturity.Toaddressthisgap,ourstudyinvestigatestheimpactofGAIfinancingonfinancialdevelopmentusingcross-sectionaldatafrom2020to2022.Itexploresthreekeyquestions:(1)HowdoesGAIfinancinginfluencefinancialdevelopmentacrosscountries?(2)WhatroledoespublicityexposureplayinsecuringGAIfinancing?(3)AretheresignificantregionaldifferencesinGAIfinancing’simpactonfinancialdevelopment?ThisstudyaimstoprovideacomprehensiveunderstandingofGAIfinancing’seffectsonfinancialdevelopmentatbothcountryandregionallevels.
ThenoveltyofthisstudyliesinitsfocusonGAIfinancingasadriveroffinancialdevelopment,arelationshiplargelyoverlookedintheliterature.WhilepreviousstudieshaveexaminedAI’sroleinfinancialsystems,theyhavenotaddressedGAIfinancing’smacro-economicimplications.Byanalyzingcross-sectionaldataacrossmultiplecountries,thisstudyoffersauniqueviewonhowGAIstartupscontributetofinancialdevelopment.Additionally,introducingpublicityexposureasaninstrumentalvariableprovidesinsightsintohowmediavisibilityaffectsinvestorconfidenceandfunding.Thestudyalsoexploresregionalheterogeneity,offeringvaluableinsightsforpolicymakerstopromotefinancialgrowthacrossdifferentsubcontinents.
2.Materialsandmethods
2.1.Dataandvariables
WeexaminetheimpactofGAIfinancingonthefinancialdevelopmentof21selectedcountriesusingacross-sectionaldataset.OurmeasureofGAIfinancingisbasedonthetotalfunding(inUSDmillion)receivedbyGAIstartupsestablishedbetween2010and2022,withdatasourcedfromCrunchbase,acomprehensiveplatformprovidinginformationonstartups,investments,andfundingactivities
.
(
LeeandGeum,2023
;
Uddinetal.,2024
;
ZbikowskiandAntosiuk,2021
).WeselectedcountriesthathadatleasttwoGAIstartupswithrecordedfunding,resultinginafinalsampleof384startupsacross21countries.
ToassessGAIfinancing’sinfluenceonfinancialdevelopment,wecollectedfinancialdevelopmentindexdatafromtheInternationalMonetaryFund(IMF)fortheyears2020,2021,and2022.Althoughouranalysisfocusesonthesethreeyears,reflectingthemostrecentandreliabledataavailable,weacknowledgethatthislimitedtimeframemayrestrictinsightsintolonger-termdynamiceffects.However,ourchoiceofacross-sectionalapproach,withdatafrom2020to2022,allowsforafocusedanalysisofshort-termimpactsinarapidlyevolvingtechnologicalcontext.Additionally,weincorporatedcontrolvariablesatbothcompanyandcountrylevels,detailedin
Table1
,toensuretherobustnessofourfindings.Tofurtheraddresspotentialendogeneityconcerns,weemployedPublicity
Table1
Variabledescriptions.
VariableType
VariableName
Symbol
Description
Source
Dependent
Financial
FD
Acompositeindexmeasuringthedevelopmentoffinancialinstitutionsandmarkets,
IMF
Variable
Development
basedondepth,access,andefficiency,fortheyears2020,2021,and2022.
Independent
GenerativeAI
GAIF
Thenaturallogarithmoftotalfunding(inmillionUSD)receivedbyindividualGenerative
Crunchbase
Variable
Financing
AIstartups.
ControlVariables
NumberofEmployeesStartupAge
StartupITSpending
ForeignDirect
Investment
NationalIncome
NOE
AGE
ITspendFDI
NI
AcategoricalvariablerepresentingtherangeofemployeesinGAIstartups(e.g.,1–10,11–50,51–100).
ThenumberofyearssincetheGAIstartupwasfounded.
ThenaturallogarithmoftotalannualITspendingbythestartup(inUSD).
NetinflowsofforeigndirectinvestmentasapercentageofGDPfortheyears2020,2021,and2022.
Thenaturallogarithmofadjustednetnationalincome(currentUSD)fortheyears2020,2021,and2022.
Crunchbase
CrunchbaseCrunchbaseWDI
WDI
Instrumental
PublicityExposure
PE
Thenaturallogarithmoftotalmediacoverage,includingpressmentions,articles,and
Crunchbase
variable
newsfeatures.
A.B.Siddiketal.FinanceResearchLetters72(2025)106519
3
Exposureasaninstrumentalvariable.
ThestatusandtrendsofGAIstartupsacross21countriesrevealsignificantvariationinboththenumberofstartupsandthefundingtheyhavereceived,asshownin
Fig.1
.TheUnitedStatesdominatesthelandscape,with229startupssecuringover$34.9billioninfunding,farsurpassinganyothercountry.TheUnitedKingdomfollows,with31startupsreceiving$642.75million.OthercountriessuchasGermanyandCanadaalsostandout,with17and16startupsreceiving$1.27billionand$1.07billion,respectively.Incontrast,smallermarketslikeArgentina,Estonia,andSouthKoreahavefewerstartups,typicallyreceivinglessthan$10millioninfunding.CountrieslikeAustralia,Brazil,Israel,andFrancehavemoderatenumbersofstartups,eachsecuringbetween$67millionand$487million.ThedataindicatesthatwhiletheU.S.istheclearleader,EuropeanandAsiancountriesarealsoseeingmeaningfulde-velopmentsinGAIfunding,albeitonasmallerscale.ThisdiversedistributionhighlightsthegrowingglobalinterestinGAI,thoughinvestmentishighlyconcentratedinafewkeymarkets.
2.2.Econometricmodels
ToexaminetheimpactsofGAIfinancingonfinancialdevelopment,weutilizesimplelinearregressionmodelsfortheyears2020,2021,and2022.Themodelsforeachyeararespecifiedseparately,asshowninthefollowingequations:
Fortheyear2020:
FDc=β0+β1GAIFc+β2NOEc+β3Agec+β4ITspendc+β5FDIc+β6NIc+?c……………..(M1)
Fortheyear2021:
FDc=β0+β1GAIFc+β2NOEc+β3Agec+β4ITspendc+β5FDIc+β6NIc+?c……………..(M2)
Fortheyear2022:
FDc=β0+β1GAIFc+β2NOEc+β3Agec+β4ITspendc+β5FDIc+β6NIc+?c……………..(M3)
Where:
FDcrepresentsfinancialdevelopmentforcountrycfortheyears(2020,2021,and2022).GAIFcisthetotalfundingreceivedbyGAI
Fig.1.ThestatusofGAIstartupswiththeirrespectivefundinginthesamplecountries.
4
A.B.Siddiketal.FinanceResearchLetters72(2025)106519
startupsincountryc.β2toβ6arecontrolvariablesforcountryc.εcistheerrortermforcountrycfortheyears(2020,2021,and2022).Toovercomepotentialendogeneityissuesandenhancetherobustnessofourbasemodel,weintroducethetwo-stageleastsquares
(2SLS)method.ThisapproachhelpsmitigateanybiasthatmayarisefromendogeneityintherelationshipbetweenGAIfinancingandfinancialdevelopment.Byusing2SLS,weaddresspotentialreversecausalityoromittedvariablebiasthatcouldaffecttheaccuracyoftheestimatedcoefficients.Moreover,weconductaheterogeneityanalysisbasedonsubcontinent-wisedivisions.ThisallowsustoexaminewhethertheimpactsofGAIfinancingonfinancialdevelopmentvaryacrossdifferentregions.Thesubcontinent-wiseanalysishelpsidentifywhetherregionalfactors,suchaseconomicconditionsorinstitutionaldifferences,leadtovariationsintheeffectsofGAIfinancingonfinancialdevelopment.Thisanalysisiscrucialtounderstandingthebroaderapplicabilityofourfindingsacrossdiversegeographiccontexts.
3.Resultsanddiscussion
3.1.Descriptivestatistics
Thedescriptivestatisticsprovideinsightsintothevariablesusedintheanalysisacrosstheyears2020,2021,and2022,asshownin
Table2
.Financialdevelopmentshowsrelativelystablemeansacrossthethreeyears,withslightvariationinstandarddeviation.GAIFhasameanof6.59(logarithmicform),withaconsiderablerangefrom3.65to10.05.ControlvariablessuchasNOE,startupage,andITspendingshowmoderatevariationacrossobservations.
Thecorrelationmatricesindicatetherelationshipsbetweenthevariables,asshownin
TableA1(a
-c
inAppendix).Forallyears,GAIFhasapositiveandsignificantcorrelationwithFD(around0.22),suggestingamoderateassociation.ITspendingalsoshowsapositivecorrelationwithFD,whileFDIexhibitsastrongnegativerelationshipwithFD,particularlyin2020and2022.NIconsistentlyshowsastrongpositivecorrelationwithFD,reinforcingitsimportanceasacontrolvariable.Additionally,thecorrelationbetweenGAIFandNOE(0.639),indicatingthatasthefinancingincreases,thenumberofemployeestendstoincreaseaswell.Similarly,GAIFandITspendingarepositivelycorrelated(around0.202),meaningthatstartupswithhigherfinancingalsotendtospendmoreonITinfrastructure.
3.2.Benchmarkregression
Thebenchmarkregressionresults(
Table3
)showthatGAIFconsistentlyhasapositiveandsignificantimpactonFDacrossallthreeyears(2020,2021,and2022).ThecoefficientsforGAIFrangebetween0.018and0.031,indicatingthathigherGAIfinancingcon-tributestoincreasedfinancialdevelopment.ThissuggeststhatGAIstartupsplayacrucialroleinenhancingthefinancialdevelopmentofthecountriesinthesample.ThemodelsalsoshowthatNOEhasanegativeandsignificanteffectonFD,implyingthatlargerGAIstartups(intermsofemployees)maynotnecessarilyboostfinancialdevelopment.Ontheotherhand,AGEandITspendingshownosignificantinfluenceonfinancialdevelopment.
ThecontrolvariablesFDIandNIhavesignificanteffectsonfinancialdevelopment.FDIconsistentlyshowsanegativeandsig-nificantrelationshipwithFD,whilenationalincomehasastrongpositiveimpactacrossallyears,highlightingtheroleofbroadereconomicfactorsinshapingfinancialdevelopment.ThehighR-squaredvalues(0.594–0.620)acrossthemodelsindicatethattheindependentvariablesexplainasubstantialportionofthevariationinfinancialdevelopment.Thesefindingsunderscoretheimpor-tanceofbothGAIfinancingandmacroeconomicvariablesindeterminingfinancialdevelopment,whilealsopointingtopotentialareasforfurtherinvestigation,suchastheroleofITspendingandfirmcharacteristics.
3.3.Robustnessanalysis
Theoutcomesofthe2SLSapproachpresentedin
Table4
indicatetherobustnessoftherelationshipbetweenGAIFandFDwhileaddressingpotentialendogeneity.Inthefirststage,PublicityExposure(PE)isusedasaninstrumentalvariableforGAIF,showinga
Table2
Descriptivestatistics.
Variable
Observation
Mean
Std.Dev.
Min
Max
FD2020
384
0.839
0.132
0.280
0.950
FD2021
384
0.840
0.136
0.252
0.939
FD2022
384
0.841
0.141
0.225
0.929
GAIF
384
6.590
1.033
3.653
10.053
NOE
383
2.117
1.234
1.000
8.000
AGE
384
4.521
2.744
1.000
14.000
Itspend
384
2.321
2.767
0.000
7.109
FDI2020
384
0.197
0.976
?1.219
3.140
FDI2021
384
0.629
0.972
?2.634
3.454
FDI2022
384
0.586
0.859
?4.048
3.884
NI2020
384
29.438
1.464
23.960
30.514
NI2021
384
29.543
1.443
24.121
30.606
NI2022
384
29.637
1.427
24.260
30.691
5
A.B.Siddiketal.FinanceResearchLetters72(2025)106519
Table3
Benchmarkregression.
Models
(M1)
(M2)
(M3)
(M4)
(M5)
(M6)
Variables
FD2020
FD2020
FD2021
FD2021
FD2022
FD2022
GAIF
0.028***
0.018***
0.029***
0.023***
0.031***
0.023***
(4.331)
(3.308)
(4.444)
(4.150)
(4.538)
(4.007)
NOE
?0.016***
?0.019***
?0.019***
(?3.311)
(?3.800)
(?3.726)
AGE
?0.001
?0.000
?0.000
(?0.333)
(?0.190)
(?0.034)
Itspend
0.003
0.002
0.002
(1.526)
(1.318)
(1.147)
FDI2020
?0.031***(?4.587)
NI2020
0.050***(10.794)
FDI2021
?0.025***(?5.481)
NI2021
0.067***(20.923)
FDI2022
?0.022***(?3.967)
NI2022
0.068***(18.870)
Constant
0.657***
?0.702***
0.647***
?1.235***
0.637***
?1.265***
(15.455)
(?5.139)
(14.753)
(?13.211)
(14.057)
(?11.995)
N
384
384
384
384
384
384
R2
0.047
0.600
0.049
0.620
0.051
0.614
adj.R2
0.044
0.594
0.047
0.613
0.049
0.608
Note:Significantat*p<0.1,**p<0.05,***p<0.01.
strongandsignificantpositiveeffectonGAIFacrossallmodels,withcoefficientsaround0.80.ThisdemonstratesthatPUisastronginstrumentforpredictingGAIfinancing.Inthesecondstage,GAIFcontinuestohaveapositiveandsignificantimpactonFDinallthreeyears(2020,2021,and2022).Thecoefficientsrangefrom0.029to0.034,confirmingthathigherGAIfinancingpositivelyinfluencesfinancialdevelopment,evenafteraccountingforendogeneity.Theunder-identificationtest(Kleibergen-Paap)showsthatthemodelsarewell-identified,andtheweakidentificationtestconfirmsthestrengthoftheinstrument.Additionally,theHansenJstatisticforoveridentificationdoesnotrejectthenullhypothesis,indicatingthattheinstrumentsarevalid.Thus,the2SLSresultsreinforcethefindingsfromthebenchmarkmodel,showingthatGAIfinancingsignificantlyenhancesfinancialdevelopment,andtheinstrumentalvariableapproacheffectivelyaddressespotentialbias.
3.4.Heterogeneityanalysis
TheheterogeneityanalysisexaminesthevaryingimpactsofGAIFonFDacrossdifferentsubcontinentalregions,asoutlinedin
Table5
.InPanelA(Asianvs.non-Asiancountries),GAIFhasasignificantandpositiveimpactonFDinAsiancountriesacrossallyears,withcoefficientsrangingfrom0.043to0.056.However,innon-Asiancountries,GAIF’simpactismuchweaker,withcoefficientsclosetozeroandstatisticalsignificanceonlyin2021(0.008,p<0.1).ThissuggeststhatGAIfinancingplaysamorecriticalroleindrivingfinancialdevelopmentinAsiancountriescomparedtonon-Asianregions.
PanelB(Europeanvs.non-Europeancountries)showsasimilardivergence.Innon-Europeancountries,GAIFhasapositiveand
Table4
TheestimationusinganIVapproachisconductedthrougha2SLSmethod.
Models
(M1)
(M2)
(M3)
(M4)
(M5)
(M6)
Variables
GAIF
FD2020
GAIF
FD2021
GAIF
FD2022
PE
0.796***
0.802***
0.799***
(13.560)
(13.770)
(13.680)
GAIF
0.029**
0.031**
0.034***
(2.690)
(2.920)
(3.350)
Constant
3.417***
?0.738**
2.597***
?1.251***
2.228***
?1.284***
(3.320)
(?2.670)
(3.730)
(?9.240)
(2.940)
(?12.110)
Controlvariables
Yes
Yes
Yes
Yes
Yes
Yes
N
384
384
384
384
384
384
Underidentificationtest
56.052***
57.043***
56.639***
Weakidentificationtest
183.901
189.503
187.238
HansenJstatistic
0.000
0.000
0.000
Note:Significantat*p<0.1,**p<0.05,***p<0.01.
6
A.B.Siddiketal.FinanceResearchLetters72(2025)106519
Table5
Heterogeneityanalysissubcontinentwise.
PanelA:Asianandnon-Asiancountries.
Models
Asian
Non-Asian
Asian
Non-Asian
Asian
Non-Asian
Variables
FD2020
FD2020
FD2021
FD2021
FD2022
FD2022
GAIF
0.056**
0.005
0.052**
0.008*
0.043*
0.008
(2.379)
(1.068)
(2.181)
(1.695)
(1.959)
(1.531)
Controlvariables
Yes
Yes
Yes
Yes
Yes
Yes
Constant
1.072
?0.610***
0.543
?1.154***
0.396
?1.123***
(1.393)
(?4.972)
(0.651)
(?13.789)
(0.423)
(?12.247)
N
40
343
40
343
40
343
R2
0.338
0.600
0.226
0.665
0.249
0.667
adj.R2
0.218
0.593
0.085
0.659
0.112
0.661
PanelB:European(EURO)andnon-European(NEURO)countries.
ModelsEURO
NEURO
EURO
NEURO
EURO
NEURO
VariablesFD2020
FD2020
FD2021
FD2021
FD2022
FD2022
GAIF0.012
0.020***
0.029*
0.016***
0.028
0.015***
(0.710)
(3.644)
(1.886)
(2.913)
(1.565)
(2.732)
ControlvariablesYes
Yes
Yes
Yes
Yes
Yes
Constant?1.407***
?0.497**
?0.696**
?1.719***
?1.675***
?2.480***
(?5.041)
(?2.154)
(?2.327)
(?13.504)
(?5.367)
(?13.873)
N85
298
85
298
85
298
R20.563
0.607
0.664
0.642
0.593
0.667
adj.R20.529
0.599
0.638
0.635
0.561
0.660
PanelC:Latin&northAmerica(L&NA)andothers.
ModelsL&NA
Others
L&NA
Others
L&NA
Others
VariablesFD2020
FD2020
FD2021
FD2021
FD2022
FD2022
GAIF0.002
0.061***
0.001
0.064***
0.001
0.070***
(0.500)
(4.197)
(0.402)
(4.839)
(0.340)
(4.572)
ControlvariablesYes
Yes
Yes
Yes
Yes
Yes
Constant?3.990***
?0.959***
?2.801***
?0.076
?1.466***
?0.920***
(?14.387)
(?3.137)
(?43.830)
(?0.233)
(?4.192)
(?2.685)
N253
130
253
130
253
130
R20.704
0.378
0.934
0.495
0.581
0.348
adj.R20.697
0.348
0.932
0.470
0.571
0.316
Note:Significantat*p<0.1,**p<0.05,***p<0.01.
significanteffectonFDinallthreeyears,withcoefficientsrangingfrom0.015to0.020.Incontrast,theimpactofGAIFinEuropeancountriesislesssignificant,showingmoderateeffectsonlyin2021(0.029,p<0.1).InPanelC(Latin&NorthAmericavs.othercountries),GAIFhasaconsistentlystrongandsignificantimpactonFDin"Other"regions,withcoefficientsaround0.061to0.070acrossallyears.InLatin&NorthAmerica,however,GAIFshowsnosignificanteffectonFD.Overall,theheterogeneityanalysishighlightsregionaldifferences,withGAIFshowingastrongerimpactonfinancialdevelopmentinAsianandnon-Europeancountriescomparedtootherregions.
4.Conclusion
OurstudyunderscoresthesignificantroleofGAIFinadvancingfinancialdevelopmentacross2020,2021,and2022,withrobustevidencefrom2SLSanalysisaffirmingGAIF’spositiveimpactonFD.Notably,weobservesubstantialregionalheterogeneity,asGAIFexertsastrongerinfluenceonFDinAsianandnon-EuropeancountriescomparedtoEuropeandtheAmericas.ThisregionaldisparitysuggeststhatGAIFismoreeffectiveinenhancingfinancialsystemsinsomeareas,whileotherfactorsmaydriveFDinothers.Thesefindingshavemultifacetedpolicyimplications.Policymakers,banks,financialinstitutions,andfinancialregulatorsshouldcollaboratetocreateconduciveenvironmentsforGAIstartupstoenhancefinancialdevelopment.InAsiananddevelopingregions,regulatorybodiesshouldfosterfavorableconditionsbyprovidingfinancialincentives,enhancinginfrastructure,andestablishingsupportiveregulatoryframeworks.Additionally,financialinstitutionsandbanksshouldactivelyinvestinandcollaboratewithGAIstartupstodriveinnovationinfinancialservices.ForEuropean,LatinAmerican,andNorthAmericanmarkets,financialregulatorsshouldfocusonintegratingGAIintoexistingfinancialframeworks,encouragingpartnershipsbetweenGAIfirmsandtraditionalfinancialentities.ThisapproachcouldhelpovercomelimitationsintheseregionswhereGAIFhaslessimpact.Furthermore,banksandfinancialin-stitutionsintheseareascanplayapivotalrolebyofferingtargetedfinancialproductsandservicesthatalignwithGAI-drivenin-novations.Finally,financialregulatorsacrossallregionsshouldaddressethicalconcerns—suchasbiasesinAI-drivendecision-making,privacyrisks,andpotentialjobdisplacement—bydevelopingframeworksthatpromotefairnessandtransparency.PubliccampaignsandinitiativestopromoteGAIcanalsoincreasevisibilityandattractinvestors,helpingdrivesustainablefinancialdevelopmentacrossdiversecontexts.Limitationsofthisstudyandrecommendationsforfutureresearchareoutlinedin
TableA2
(seeappendix).
A.B.Siddiketal.FinanceResearchLetters72(2025)106519
7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校供餐服務合同(3篇)
- 駕駛員聘用合同(28篇)
- 夫妻起草離婚協(xié)議書
- 房地產交易合同書
- 印刷品采購合同
- 人工智能與教育融合合作協(xié)議
- 建設工程轉讓合同
- 合伙入股協(xié)議書分紅
- 體育行業(yè)智能賽事管理與運動訓練方案
- 基于大數(shù)據(jù)分析的企業(yè)決策支持系統(tǒng)合作協(xié)議
- 2024-2025年第二學期學校教導處工作計劃(二)
- 2025年蘇州衛(wèi)生職業(yè)技術學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 二零二五年度博物館場地租賃與文物保護合作協(xié)議3篇
- 2025年春新人教版歷史七年級下冊全冊課件
- 2024年鐘山職業(yè)技術學院高職單招語文歷年參考題庫含答案解析
- 震旦ad188維修手冊
- 五金英語詞匯盤點
- 內容講義說明案例nxt pop trainning
- 2021年羽毛球比賽規(guī)則及裁判手勢
- 現(xiàn)代科學技術概論復習重點
- 入職申請表完整版
評論
0/150
提交評論