




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
NISTSpecialPublicationNISTSP1320
DrivingU.S.InnovationinMaterialsand
ManufacturingusingAIandAutonomousLabs
BuildingaNationalCenterandTestbedforAutonomousMaterialsScience
HowieJoress ZacharyTrauttAustinMcDannald BrianDeCostAaronGiladKusneFrancescaTavazza
Thispublicationisavailablefreeofchargefrom:
/10.6028/NIST.SP.1320
NISTSpecialPublicationNISTSP1320
DrivingU.S.InnovationinMaterialsandManufacturingusingAIandAutonomousLabs
BuildingaNationalCenterandTestbedforAutonomousMaterialsScience
HowieJoress ZacharyTrauttAustinMcDannald BrianDeCostAaronGiladKusneFrancescaTavazza
DataandArtificialIntelligenceDrivenMaterialsScienceGroupMaterialMeasurementLaboratory
Thispublicationisavailablefreeofchargefrom:
/10.6028/NIST.SP.1320
August2024
U.S.DepartmentofCommerce
GinaM.Raimondo,Secretary
NationalInstituteofStandardsandTechnology
LaurieE.Locascio,NISTDirectorandUnderSecretaryofCommerceforStandardsandTechnology
Certainequipment,instruments,software,ormaterials,commercialornon-commercial,areidentifiedinthis
paperinordertospecifytheexperimentalprocedureadequately.Suchidentificationdoesnotimply
recommendationorendorsementofanyproductorservicebyNIST,nordoesitimplythatthematerialsorequipmentidentifiedarenecessarilythebestavailableforthepurpose.
NISTTechnicalSeriesPolicies
Copyright,Use,andLicensingStatements
NISTTechnicalSeriesPublicationIdentifierSyntax
PublicationHistory
ApprovedbytheNISTEditorialReviewBoardon2024-07-10
HowtocitethisNISTTechnicalSeriesPublication:
JoressH,TrauttZ,McDannaldA,DeCostB,KusneAG,TavazzaF(2024)DrivingU.S.InnovationinMaterialsandManufacturingusingAIandAutonomousLabs.(NationalInstituteofStandardsandTechnology,
Gaithersburg,MD),NISTSP1320.
/10.6028/NIST.SP.1320
AuthorORCIDiDs
HowieJoress:0000-0002-6552-2972
ZacharyTrautt:0000-0001-5929-0354
AustinMcDannald:0000-0002-3767-926X
BrianDeCost:0000-0002-3459-5888
AaronGiladKusne:0000-0001-8904-2087
FrancescaTavazza:0000-0002-5602-180X
ContactInformation
howie.joress@,francesca.tavazza@
i
NISTSP1320August2024
Abstract
WiththegoalofadvancingUScompetitivenessandexcellenceinthematerialsandmanufac-turingindustries,wepresentourvisionfortheNationalCenterforAutonomousMaterialsScience.Theobjectiveofthiscenteristoenableandpromotetheuseofautonomousmethodologiesformaterialsscienceinindustrialapplications.Virtuallyeveryindustryisdefinedandlimitedbythematerialsandprocessingavailabletoit.Thefoundationofmaterialscienceistoelucidateandexploittherelationshipsbetweenstructure,processing,andpropertieswithinmaterialswhichaffectitsultimateperformance.Usingtraditionalresearchapproachesthisistypicallyalengthy,costly,andcomplexprocess.Newparadigmsofconductingresearch,leveragingcuttingedgeAIandautomationtechnology,arebeingdevelopedthatcanaddressgrandchallengesinmaterialsresearchanddevelopmentthatareotherwiseintractable.Thesenewresearchparadigmsadditionallyacceleratetheacqui-sitionofknowledgeandunderstandingofcriticalmaterialsproblems.Unfortunately,mostindustrialR&Daswellassomeacademicresearchdoesnottakefulladvantageofthesenewresearchparadigms.TheU.S.needstofostertheadoptionofthesenewresearchparadigmsasanationaleffortinordertoaccelerateandmaintainglobaltechnologicalleadership.OurvisionisfortheUStosupportaninitiativethatwouldfacilitatetheindustry-wideadoptionofthesenewmaterialsscienceresearchparadigms.
Keywords
Autonomousmaterialsscience;Self-drivinglab;Testbedfacility.
NISTSP1320August2024
ii
TableofContents
ExecutiveSummary
1
1.Introduction
1
1.1.FillingtheMaterialsTechnologyGap
1
1.2.AutonomousR&D:ANewParadigm
1
1.3.BenefitsofAutonomousMethods
2
1.4.AutonomousMethodscanSolveGrandChallengesinMaterialsandManufac-
turing
3
1.5.CurrentChallengestoAutonomousImplementation
4
1.5.1.Lackofstandardizedprotocols
4
1.5.2.Advanceddomainspecificalgorithms
5
1.6.ThePathForward
6
2.MajorGoals
7
2.1.RevolutionizingHowU.S.IndustryDoesMaterialsResearchandDevelopment
7
2.2.EliminatingtheFormidableBarrierstoAutonomousTechnologyAdoption
7
2.3.MakingPreviouslyImpossibleMaterials“GrandChallenges”Tractableand
Achievable
7
3.AVisionforaNationalCenterforAutonomousMaterialsScience
8
Approach1:BuildNewWorld-ClassAutonomousTestbedFacilities
8
Approach1.1:DevelopmentSandbox
8
Approach1.2:ExemplarSystem
8
Approach1.3:UserFacility
9
Approach1.4:DataGenerator
9
Approach2:DevelopaStandards-BasedModularLaboratoryEcosystem
9
Approach2.1:DevelopSampleManagementStandards
10
Approach2.2:DevelopInstrumentControlandCommunicationStandards
10
Approach2.3:DevelopDataandKnowledgeManagementStandards
11
Approach2.4DevelopAlgorithmandModelIntegrationStandards
11
Approach3:EmpowerPublic-PrivateCooperationviaNewConsortia
12
Approach4:IncentivizeEcosystemDevelopmentandHigh-RiskActivitieswith
DirectedFundingOpportunities
12
Approach5:NextGenerationWorkforceEducation
13
iii
Approach6:End-Usersupport
13
4.Impact
13
5.WholeofGovernmentApproach
14
6.Resources
14
6.1.BuildingAcquisition,Construction,andOutfitting:$200M
15
6.2.ExperimentalHardwareAcquisition:$120M
15
6.3.ComputationalHardwareAcquisition:$100M
15
6.4.Personnel:$180M($18Mperyear)
15
6.5.IncentivesforIndustryStakeholders:$200M
16
6.6.Otheroperatingcosts:$200M($20Mperyear)
16
7.Timeline
16
References
17
ListofFigures
Fig.1.Themajorfunctionalcomponentsofanautonomouslaboratory.Adoptedfrom
Ref[1]
3
iv
NISTSP1320August2024
Acknowledgments
TheauthorsthankDHolbrookandJWarrenforusefuldiscussionandfeedback.
1
NISTSP1320August2024
ExecutiveSummary
InresponsetotheSenateRoadmapforArtificialIntelligencePolicyintheU.S.,wepresentavisiontoempowerandbuildtheproposed”testbedtoidentify,test,andsynthesizenewmaterialstosupportadvancedmanufacturingthroughtheuseofAI,autonomouslaboratories,andAIintegrationwithotheremergingtechnologies,suchasquantumcomputingandrobotics.”
MaterialsTechnologyGap:Allmoderntechnologyislimitedbythecapabilitiesofcurrent-generationmaterials.Currently,U.S.industriesrelyonmethodsspanningempiricaltrialanderrortophysics-anddata-basedmethodstodevelopnewadvancedproducts.Unfortunately,somelegacyR&DapproachesmaynotbecompetitiveinaworldcurrentlyundergoinganAIrevolution.ThiseffortaimstoenableU.S.industriestoleveragethemostpowerfulparadigmsofR&Dapproachestodevelopnewadvancedandsustainablematerialsandproducts.ThesenewapproachesexpandthelimitsofautonomouslaboratoriesandscientificallyexplainableAItosolveournation’smosturgenttechnicalchallenges.
Opportunity:Autonomousexperimentation(AE),orself-drivinglaboratories,combinesAIandautomationwhileleveraginghumanintuitionandcreativitytoguidecampaignsofexperiments.AEcanreducethetimeandresourcesneededtodiscovernewmaterialsbyordersofmagnitudeandreducethetime-to-marketforcriticaltechnologiesbasedonthem.Further,AEhasthepowertoaddressproblemsthatareotherwiseintractablycomplexorevermutating.MaterialsR&Dinvolvescombiningandprocessingdifferentkindsofrawmaterialsindifferentways,andtherearemorepossiblecombinationsthanstarsintheknownuniverse.Thisnearinfinitesolutionspaceistheunderlyingbasisofallgrandchallengesinmaterialsandmanufacturing.Aninitiativeisneededtodeveloptoolsthatenableindustrytoautonomouslynavigatethisinfinitesolutionspaceefficientlywithautomatedlaboratories.AIhasthepowertodiscerncomplexpatternsinlargedatasetsincludingmultiplestreamsofinputmaterialsdata.Automationenablesvitalmaterialsdatatobecollectedrapidlyanddynamically.ToenableUSIndustrytomaintaintechnicalleadershipindevelopingcutting-edgematerialsandtechnologies,theUSmustbecomealeaderinAE.
AutonomousExperimentationChallenges:WhiletheunderlyingtechnologyforAIandautomationexistsinmanydomains,theirapplicationtomaterialsresearchisstillinitsinfancy.Currently,thereisnostandardizedAEecosystemformaterialsR&D,whichisamajorobstacletoindustrialadoption.Creatingastandardsbasedecosystemwilldramaticallyreducethecostofengineeringaplatform,aswellasreducetheriskofobsolescencebyensuringitisexpandableandupgradeable.Relatedly,adefinedstandardwillempowerequipmentandsoftwarevendorstodesigntheirproductsforautonomousintegration,reducingtheircostandliabilityassociatedwithbespokeengineeringandensuringacustomerbasefortheirproducts.Beyondthesestandardizationchallenges,therearemanybasicandappliedresearchchallengestoincreaseefficacyofAE,includingdevelopmentofnewexplainableAIalgorithmsaswellassynthesismethodologyandmaterialsmetrology.
Goals:PromoteUStechnologicalleadershipby:
1.RevolutionizinghowU.S.industrydoesmaterialsresearchanddevelopment:ThiseffortseekstopropelU.S.industriesintomorepowerfulparadigmsofresearch,acceleratingthediscoveryandcommercializationofnewtechnologiesanddevicesthatsolvepressingsocietalneeds.
2
NISTSP1320August2024
2.Eliminatingtheformidablebarrierstoautonomoustechnologyadoption:Acriticaloutcomeofthiseffortwillbetheavailabilityofoff-the-shelf,autonomoussolutionsthatwilldrasticallyreducetheinvestmentandriskassociatedwithimplementingautonomousR&Dworkflows,whichiscriticalforsmall-andmedium-sizedbusinesses.
3.Makingpreviouslyimpossiblematerials“GrandChallenges”tractableandachievable:Thiseffortseekstodeveloptoolstonavigatenearinfinitesolutionspacesinarapid,intelligent,andmeaningfulway.
Approach:
1.Buildanewworld-classcentertohostautonomoustestbedfacilities:WeenvisiontheconstructionofanewNIST-lednationalcentertoworkside-by-sidewithindustry,government,academiatodevelopastandards-based,modularecosystemofnewhardware,software,andmethodsforAEinmaterialsR&D.Thiscenterwillhostatestbedthatwillserveasatechnologydemonstrator,technologyincubator,nationaluserfacility,andreferencedatagenerationplatform.Thistestbedwillconsistofasetofautonomous-readyscientificinstrumentsforon-demandmaterialssynthesisandmaterialscharacterization.Theecosystemwillbedesignedtobereadilyimplementableinlabsacrosstheresearchsectorincludingwithinindustry,government,andacademia.Thistestbedandecosystemwillempowerhuman-AIteamingformaterialsresearch.
2.Developamodularautonomouslaboratoryecosystem:Justastheinternetrevolutionwastheoutcomeoflow-levelcommunicationstandards,weaimtoinitiatealaboratoryrevolutionthatwillbepoweredbyastandards-basedmodularlaboratoryecosystem.Inpartnershipwithindustrystakeholders,NISTwillleaddevelopmentofthisnext-generationlaboratoryecosystemthatisbasedonandenabledbyvoluntaryconsensusstandards.Thesestandardswillenablecomponentsfortheecosystem,producedbyindustrypartners,tobemodularandplug-and-playandwillreducetheriskforproductvendors.NISTandpartnerswillusethetestbedasanenablingtooltocoordinateanddevelopstandardsandprotocolsforindustry-wideinteroperability,includingsamplemanagement,instrumentcommunication,datamanagement,andAIalgorithms.Developmentofnewmarketableecosystemcomponentsbyindustrywillbeincentivizedbydirectfinancialsupportthroughcompetitivedevelopmentgrantsandothermechanisms.Thiseffortseekstoinitiatearevolutioninhowlaboratoryinfrastructureisdeveloped,commercialized,andused.
3.Cultivatepublic-privatepartnershipsandworkforcedevelopment:WeenvisionNISTleadingthecoordinationofmulti-agencyeffortsandpublic-privatepartnershipstorealizethefullpotentialoftheAEecosystemwithinU.S.industry.ThisNIST-ledcenterwouldworktoprovideorganizationalframeworksandincentivemechanismsforprioritycollaborations.Thesecollaborationswouldrevolvearoundthedevelopmentofnewhardware,software,andalgorithmstoexpandtheecosystemofAEcomponents.Educatingthenext-generationworkforcewillbecriticaltoensurethefullandsustainableimpactofthisAErevolution.Thetestbedwillalsoserveasaplatformforhands-onpracticaltrainingacrossarangeofeducationallevels,fromvocationaltodoctoralprograms.
TimeandResources:Weestimatethatthisvisionwilltake10yearstocometofullfruitionandrequire$1Bforthecenter.
1
NISTSP1320August2024
1.Introduction
1.1.FillingtheMaterialsTechnologyGap
AsexpressedbestbyGreenetal.
[2]:
Materialsaretechnologyenablers.Therewouldbenoskyscraperswithoutsteelgirders.Therewouldbenocommercialaviationindustrywithouthigh-strengthaluminumalloysandadvancedcomposites.Therewouldbenoinformationagewithoutsilicon.Therewouldbenomobilephoneswithoutfunctionalceramics.Therewouldbenosolarelectricitywithoutphotovoltaicmaterials.Therewouldbenomodernmedicinewithoutbiocompatiblesoftmaterials.Virtuallyeveryindustryisdefinedandlimitedbythematerialsandprocessingavailabletoit.
Thefoundationofmaterialscienceistoelucidatetherelationshipsbetweenstructure,processing,andpropertieswithinmaterialsandhowtheyaffecttheirultimateperformance.Theworkofmaterialsdesignistoharnesstheknowledgeofthoserelationshipstomakematerialswiththeneededpropertiesandperformancetomeetcriticalsocietalneeds.
Thespaceofpossiblematerialprocessing,theresultantstructures,andtheirrespectivepropertiesistoolargetoexploreandoptimizeefficientlywithtraditionalresearchmethods.Mosttechnologicallyrelevantmaterialsaretoohierarchicallyintricateforeffectivetheory-drivenapproaches,andbrute-forcetrial-and-errorapproachessufferfromthe“curseofdimensionality”,theexponentialexplosionofpossibilitieswithincreasingnumberofdesignparameters.Yet,thesearestillthedefaultapproachestomaterialsdiscoveryandprocessingoptimizationproblemsinmanyindustries.Autonomouslaboratoriesimplementhardwareandsoftwaretoolsthathelpnavigatethesearchspaceofthesematerialssciencechallengeswithmoreefficacy.Theoverarchingobjectiveoftheeffortdescribedhereistodemonstrateandfacilitatetheuseofautonomouslabsformaterialsscienceinindustrialapplications.Ourvisionistocreateanationalcentertoenableandpromoteautonomousmethodsformaterialsscience.
1.2.AutonomousR&D:ANewParadigm
Tomeetthematerialsneedsofthe21stcenturyitisnecessarytochangethewaymaterials
R&Disdone.Researchistypicallycategorizedinto4majorparadigmsofscientificstudy:(i)empiricalscience,(ii)theorydrivenscience,(iii)computationalscience(e.g.,simula-tions),and(iv)datadrivenscience.U.S.industriesareatvariouslevelsofembracingeachparadigm.ThefederalgovernmenthasbeenactivelyincentivizingadvancementofthematerialssciencecommunityforsometimethroughprogramssuchasfundingIntegratedComputationalMaterialsEngineering(ICME)
[3]
effortsandtheMaterialsGenomeInitiative(MGI)
[4]
.Theseinitiativeshavepropelledindustryforwardinharnessingcomputationalanddatadrivenmethods.The4thparadigmleverages”bigdata”andmachinelearningto
2
NISTSP1320August2024
makepredictionsandinterpolationsfromwhatisalreadyknown,oftenincasesthataretoocomplextocreatetheorybasedmodels.
[5]
However,manymaterialsproblemsrequiretraversingaparameterspacethathasnotbeentraversedbefore,whereevenconventional(4thparadigm)“bigdata”extrapolationswillfail.Furthermore,manyimportantmaterialsproblems(parameterspaces)areimpossibletoexplorewithanyofthe4existingparadigmsofscientificdiscovery.
Currently,mostR&Dexperimentsarecarriedoutusingindependentinstrumentswithalargeamountofmanualinteractionforoperationssuchassamplesynthesis,characterization,dataanalysis,andknowledgeextraction(e.g.,findingpatternsandtrends).Autonomousexperimentation(AE),colloquiallyreferredtoasself-drivinglabs,offersanewoperationalparadigmthatsystematicallygeneratesthemostinformativedatatowardtheendgoaloftheparticularproblemathand,greatlyincreasingtheefficiencyofresearchbudgets.AEcanleveragecutting-edgeadvancesinautomatedexperimentationandmachinelearn-ingalgorithms,alongwiththeoreticalcomputation,forrapidlyacquiringnewmaterialsknowledge.Thisfreeshumanscientiststofocusonimbuingthesystemwithintuitionand
leveragingtheircreativitytoguidethesystemtowardsimportantwork.Fig.
1
illustrates
thisconceptually.Thecoreofanautonomoussystemisatightlycoupledfeedbackloop.Tostarttheloopanexperimenterframestheproblemwithasetofobjectivesandcon-straints.Priorknowledgeincludingdatabasesofknownmaterialsandtheirproperties,physicochemicalheuristics,andphysicallawscanalsobeprovidedtotheplatform.TheAI-basedagentwillthentakeallofthisinformationanduseittogenerateacomputationallyinexpensiverepresentativemodelofthesystem,thenuseittomakepredictionsacrossthevastparameterspace.Basedontheobjectiveandthemodel,theagentwilldecidewhatnewdatawillprovidethemostcriticalpieceofinformationtoincreaseitsknowledgeandreachitsobjective,typicallythroughsomecombinationofexplorationandoptimization.Theautomatedsystemwillthenperformanexperimentortheorybasedsimulationtoproducethatknowledge.Theplatformthenanalyzes,interprets,andstoresthatdata.TheAIagentwillthenlookattheupdateinformationandmakeadecisiononthenextdatapoint.Thisloopisrepeateduntilsufficientinformationisgatheredtoachievetheobjective.
1.3.BenefitsofAutonomousMethods
Autonomousmethodshaveseveraladvantagesovertraditionalresearchmethods.Theuseofactivelearning,alongwithinclusionoftheory-basedmodeling,cangreatlyincreasethevalueofeachexperimentaldatapointcollected.Conversely,thesemethodsreducetheamountoflow-valuedatathatneedstobecollectedinordertogeneratethesameknowledge.Particularlyinfieldslikematerialsscience,generatingdatacanbefiscallyexpensiveandresourceintensive.Reducingthenumberofexperimentsalsoimprovestheenvironmentalsustainabilityofresearchbyreducingtherequiredexperimentalpre-cursorsandexperimentalwaste.Furthermore,AI-baseddecision-makingsystemswithwell-characterizedassumptionscanreducetheunquantifiableeffectsofbiasonthepartofhumanexperimenters,bothondecisionmakingandanalysis.
3
NISTSP1320
August2024
Fig.1.Themajorfunctionalcomponentsofanautonomouslaboratory.AdoptedfromRef
[1]
Collectingdataatscalessufficienttomeetsocietalneedsrequiresagileexperimentalcapabilitiestodynamicallyexploredisparatehypotheses.Robotic,automatedplatformsachievethisbyquicklyandaccuratelyexecutingexperimentsondemand.Theseautomatedplatformsbringseveraldistinctadvantages:First,thedataisgeneratedwithroboticcontrol,whichhastheadvantageofbeingmoreprecise,traceable,repeatable,andsystematic.Second,thedigitallynativedataproducedbyautomatedlabsstreamlinescollectionandrecordingofcrucialmetadataabouttheexperiment.Third,theselaboratoriescanalsorunwithouttheneedfordowntimerequiredbyhumanlabworkers.Thetimeandcostsavingsassociatedwiththeseplatformsisnotsimplyadifferenceindegree,butinmanycasesisadifferenceinkind;makingproblemswhichwerepreviouslyintractablycomplextractable.
1.4.AutonomousMethodscanSolveGrandChallengesinMaterialsandManufacturing
MaterialsR&Dinvolvescombiningandprocessingdifferentkindsofrawmaterialsindifferentways,andtherearemorepossiblecombinationsthanstarsintheknownuniverse.Thisnearinfinitesolutionspaceistheunderlyingbasisofallgrandchallengesinmaterialsandmanufacturing.TherearesometechnicalareaswhereAEplatformsmaybetheonlywaytomakematerialsdesigntractable.Someareassuchashighentropyalloys—alloyswithmultipleelementsinlargeproportionswhichpromiseextraordinarypropertiesforapplicationsasvariedashypersoniccoatingsandwatersplittingcatalysts—existinsuchalargecompositionalandprocessingdesignspacethatcollectinginformativedataonthesealloysthroughstandardexperimentalapproachesisintractable.Anotherplaceautonomous
4
NISTSP1320August2024
platformsarecrucialisindomainswheretheproblemisconstantlymutating.Twoexamplesofthisaremetals-basedadditivemanufacturing(AM)andcirculareconomy.Intheformerexample,optimizationofAMprocessingparametersisacomplexproblem.Eachuniquecombinationofpartgeometry,materials,andprintingplatformrequiresanewoptimization.Efficientlymappingthisoptimizationsurfaceistheonlypathforbeingabletodesignpartswithoutdenovoexperimentationforeachpartandprocess.Similarly,recyclingofmaterialsaspartofacirculareconomyrequirescontinuallyoptimizingtheprocessingtoaccountfortheevermutatinginputmaterialstream,whichcanhavestrongimpactsontheend-productpropertiesandperformance.Understandingwhateffectsarecausedbythechanginginputstream,whatmaterialscanbemade,andwhatadjustmentstotheprocessingareneededisanongoingdesignchallenge.Inallofthesecases,thematerialsphysicsistoocomplextobemodeledusingcurrentlyavailable,first-principlesbasedapproaches,soexperimentationisanecessarydrivingforceforinnovation.
1.5.CurrentChallengestoAutonomousImplementation
1.5.1.Lackofstandardizedprotocols
R&DlabsthatwouldliketotakeadvantageofthebenefitsthatAEcanprovidefaceavarietyofchallenges,andtheirassociatedcosts,whenitcomestoimplementinganautonomousplatform.Manyofthesechallengeshavebeenhighlightedinarecentgovernmentwidereport:Ref.
[6]
.Therearecurrentlynoagreedprotocolsforhowsamplesshouldbetransferredbetweeninstruments,norstandardizedprotocolsforinteroperabilityfordatasharingorinstrumentcontrol.Thisleavesresearcherswithtwooptions:seekanoutsideequipmentvendortoputtogetheraninstrument,typicallyatgreatcost,ortakethetimetocobbletogetherinstrumentsin-house.Becausethereisnostandardization,theseplatformsaretypicallydesignedforasinglepurpose,meaningtheengineeringworkputintothemcannottypicallybeleveragedforfutureplatforms.Furthertheplatformsaretypicallybuiltforonepurposeandwhenthescopeofinquiryshiftstheplatformbecomesobsolete,necessitatingamajorredesign.
Thecurrentrarityofthesesystemshasledtoandiscausedbya“chickenandeggproblem”betweenvendorsandend-users.Becauseofthelargeinvestmentcurrentlyneededtoprocureordevelopanautonomoussystem,currentlyfewend-usersareattemptingtouseoneaspartoftheirR&Defforts.Asaresult,vendorsdonotbelievethereisamarkettocreatehardwareandsoftwaretosupportthesetypesofsystemsandthereforearereluctanttomaketheinvestmenttodeveloptheseproducts.Inturn,thismakesbuildinganautonomoussystemmorechallengingandexpensive.
AclearexampleofthiswasdiscussedindetailattheOctober2023AutonomousMethodolo-giesforAcceleratingX-rayMeasurementsworkshophostedbyNISTandtheInternationalCenterforDiffractionData.Severalmanufacturersofcommonx-raydiffractometerswerepresentandmanydescribedtheirreluctancetocreateinterfacesnecessarytoenableau-tonomouscontroloftheirinstruments.Theclearmessagewasthat,atpresent,therewas
5
NISTSP1320August2024
notsignificantcustomerrequestforthesefeatures(butnotnone).Thefurtherconcernwasthatthelackofastandardinterfacemeantdifferentcustomerswouldrequestdifferentinterfaces,requiringrepetitivecustomengineering.Arelatedriskthatwasdiscussedistheliabilityforvendorsthatchangestosoftwarethatinteractswiththeirinterfacesbutisoutoftheircontrolwouldinverselyaffectthefunctionalityoftheirtool;aproblemforwhichcustomerswoulddemandfixes.Giventhesechallenges,theseequipmentmanufacturersdecidedthat,forthemoment,theywouldavoidofferingthisfeatureset.
Anotherchallengethatisslowingthewidespreadadoptionofthesetechnologiesisthetechnologytransferoftools,bothhardwareaswellassoftware,fromthemanyacademicresearchlabsworkingintheAEspacetoindustry.Thisisaparticularissueforsoftwaretools;manytoolswrittenbystudentsareoftennotmaintainedataprofessionallevelnecessaryforadoptionbyequipmentmanufacturersandindustrialusers.
1.5.2.Advanceddomainspecificalgorithms
Autonomousphysicalscienceisstillinitsearlystages.Inadditiontotheengineeringchal-lengesdescribedabove,thereareseveralopportunitiesforfurtherinnovationtoimprovetheseautonomousworkflows.Someoftheseinnovationscanboostthescopeandspeedofwhatcanbeaccomplishedwithinth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年供暖系統(tǒng)承包經(jīng)營合同范文
- 2025年全球出版物許可合同示例
- 2025年體育用品購銷合同范本
- 2025年養(yǎng)豬項目實施過程合同模板
- 2025年辦公租賃合同管理臺賬模板
- 2025年農(nóng)產(chǎn)品供應(yīng)合同文本
- 2025年試用合同協(xié)議書示例
- 2025年個人墊付貨款合同協(xié)議
- 2025年企業(yè)員工保密合同模板
- 2025年企業(yè)員工勞動派遣合同范文
- 2024年山東商務(wù)職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 醫(yī)學(xué)教育中的學(xué)習(xí)風(fēng)格與個性化教學(xué)
- GB/T 45167-2024熔模鑄鋼件、鎳合金鑄件和鈷合金鑄件表面質(zhì)量目視檢測方法
- 2023年東北公司加油站賬務(wù)人員考試題庫
- 2024年四川綿陽初中學(xué)業(yè)水平考試英語試卷真題(含答案詳解)
- 《鴉片戰(zhàn)爭改》課件
- 2024至2030年中國數(shù)字壓力表行業(yè)投資前景及策略咨詢研究報告
- 《SPIN顧問式銷售》課件
- 2025屆河南省鄭州市外國語學(xué)校高三考前熱身英語試卷含解析
- 【初中數(shù)學(xué)】2024-2025學(xué)年人教版七年級數(shù)學(xué)上冊期末模擬練習(xí)
- 統(tǒng)編版九年級道德與法治上冊期中考試卷帶答案
評論
0/150
提交評論