達(dá)州職業(yè)技術(shù)學(xué)院《視覺傳達(dá)應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
達(dá)州職業(yè)技術(shù)學(xué)院《視覺傳達(dá)應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
達(dá)州職業(yè)技術(shù)學(xué)院《視覺傳達(dá)應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
達(dá)州職業(yè)技術(shù)學(xué)院《視覺傳達(dá)應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
達(dá)州職業(yè)技術(shù)學(xué)院《視覺傳達(dá)應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁達(dá)州職業(yè)技術(shù)學(xué)院

《視覺傳達(dá)應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機(jī)視覺的醫(yī)學(xué)影像分析中,例如對腫瘤的檢測和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進(jìn)行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學(xué)操作和閾值分割的方法2、計算機(jī)視覺中的行人檢測是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個擁擠的公共場所中準(zhǔn)確檢測出行人,同時要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復(fù)雜環(huán)境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學(xué)習(xí)的行人檢測C.基于運(yùn)動信息的行人檢測D.基于形狀模板的行人檢測3、計算機(jī)視覺中的動作識別旨在識別視頻中的人體動作。假設(shè)要對一段監(jiān)控視頻中的人員動作進(jìn)行分類,以下關(guān)于動作識別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復(fù)雜的動作變化,準(zhǔn)確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時處理空間和時間維度的信息,適用于動作識別任務(wù)D.動作識別系統(tǒng)對視頻的拍攝角度和背景變化不敏感,具有很強(qiáng)的通用性4、在計算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,需要將不同時間或視角拍攝的圖像進(jìn)行對齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行精確配準(zhǔn),圖像中存在地形變化和云層遮擋。以下哪種圖像配準(zhǔn)方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準(zhǔn)B.基于灰度的配準(zhǔn)C.基于變換模型的配準(zhǔn)D.基于深度學(xué)習(xí)的配準(zhǔn)5、在計算機(jī)視覺的圖像去噪任務(wù)中,去除圖像中的噪聲。假設(shè)要對一張受到嚴(yán)重噪聲污染的圖像進(jìn)行去噪處理,以下關(guān)于圖像去噪方法的描述,正確的是:()A.均值濾波方法能夠在去除噪聲的同時很好地保留圖像的細(xì)節(jié)B.中值濾波對椒鹽噪聲的去除效果不佳C.基于深度學(xué)習(xí)的圖像去噪方法可以自適應(yīng)地學(xué)習(xí)噪聲模式和圖像特征D.圖像去噪不會引入任何新的失真或模糊6、計算機(jī)視覺中的視頻理解不僅包括對單個幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時空動態(tài)信息和語義信息?()A.基于幀級特征和分類器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機(jī)制C.基于光流和運(yùn)動軌跡的方法D.基于音頻和視頻融合的方法7、在計算機(jī)視覺的圖像壓縮任務(wù)中,假設(shè)要在保證一定圖像質(zhì)量的前提下,盡可能減少圖像的數(shù)據(jù)量。以下哪種圖像壓縮方法可能更有效?()A.基于離散余弦變換(DCT)的壓縮算法,如JPEGB.無損壓縮方法,如PNGC.不進(jìn)行任何壓縮,直接存儲原始圖像D.隨機(jī)刪除圖像中的部分像素8、計算機(jī)視覺中的無人駕駛技術(shù)是一個綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計算機(jī)視覺的說法,不正確的是()A.計算機(jī)視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r準(zhǔn)確地識別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計算機(jī)視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對各種復(fù)雜的交通場景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計算機(jī)視覺面臨的挑戰(zhàn)9、假設(shè)要構(gòu)建一個能夠?qū)嬜髌愤M(jìn)行真?zhèn)舞b定的計算機(jī)視覺系統(tǒng),需要對作品的筆觸、線條和風(fēng)格等特征進(jìn)行分析。以下哪種技術(shù)在書畫鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風(fēng)格遷移C.圖像風(fēng)格分析D.以上都是10、在計算機(jī)視覺的圖像分類任務(wù)中,假設(shè)數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種方法可以緩解這種不平衡對分類模型的影響?()A.對少數(shù)類進(jìn)行過采樣或?qū)Χ鄶?shù)類進(jìn)行欠采樣B.只使用多數(shù)類的樣本進(jìn)行訓(xùn)練C.不考慮類別不平衡,直接訓(xùn)練模型D.隨機(jī)選擇樣本進(jìn)行訓(xùn)練11、在計算機(jī)視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制12、計算機(jī)視覺中的姿態(tài)估計任務(wù),確定物體在空間中的位置和方向。假設(shè)要估計一個機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計方法在復(fù)雜環(huán)境中總是能夠準(zhǔn)確估計姿態(tài)B.深度學(xué)習(xí)中的端到端姿態(tài)估計網(wǎng)絡(luò)不需要對物體的結(jié)構(gòu)和運(yùn)動有先驗了解C.姿態(tài)估計的結(jié)果不受相機(jī)參數(shù)和拍攝角度的影響D.結(jié)合多種傳感器數(shù)據(jù)和深度學(xué)習(xí)的方法可以提高姿態(tài)估計的精度和魯棒性13、在計算機(jī)視覺的圖像風(fēng)格遷移任務(wù)中,假設(shè)要將一張照片轉(zhuǎn)換為具有特定藝術(shù)風(fēng)格的圖像,以下哪種技術(shù)可能對生成逼真的風(fēng)格效果起到關(guān)鍵作用?()A.對抗生成網(wǎng)絡(luò)(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(jī)(BoltzmannMachine)14、計算機(jī)視覺中的光流估計用于計算圖像中像素的運(yùn)動信息。假設(shè)要估計一段視頻中物體的運(yùn)動速度和方向,以下關(guān)于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復(fù)雜場景中能夠準(zhǔn)確計算光流B.深度學(xué)習(xí)中的光流估計網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練C.光流估計的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時空信息的深度學(xué)習(xí)光流估計方法能夠提高估計的準(zhǔn)確性和魯棒性15、在計算機(jī)視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)16、在計算機(jī)視覺的圖像超分辨率任務(wù)中,假設(shè)要將一張低分辨率圖像恢復(fù)為高分辨率圖像。以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡單快速,但恢復(fù)出的圖像細(xì)節(jié)不夠清晰B.基于深度學(xué)習(xí)的方法能夠生成逼真的高分辨率圖像,但需要大量的訓(xùn)練數(shù)據(jù)和計算資源C.圖像超分辨率技術(shù)可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復(fù)出原始高分辨率圖像的所有信息17、在計算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是18、圖像增強(qiáng)是為了改善圖像的質(zhì)量和視覺效果。假設(shè)我們有一張由于光照不足而顯得暗淡的圖像,需要對其進(jìn)行增強(qiáng)以突出細(xì)節(jié)。以下哪種圖像增強(qiáng)方法可以有效地提高圖像的對比度,同時避免過度增強(qiáng)導(dǎo)致的噪聲放大?()A.直方圖均衡化B.灰度變換C.銳化濾波D.中值濾波19、在計算機(jī)視覺的動作識別任務(wù)中,區(qū)分不同的人體動作。假設(shè)要從一段視頻中識別出一個人是在跑步還是走路,以下關(guān)于動作識別方法的描述,正確的是:()A.基于骨架信息的動作識別方法對人體姿態(tài)的微小變化不敏感B.只考慮動作的空間特征就能準(zhǔn)確識別不同的動作C.融合時空特征和深度學(xué)習(xí)模型能夠提升動作識別的準(zhǔn)確率D.動作識別的結(jié)果不受視頻拍攝角度和背景干擾的影響20、計算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法21、計算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是22、計算機(jī)視覺在自動駕駛領(lǐng)域有著至關(guān)重要的應(yīng)用。假設(shè)一輛自動駕駛汽車正在道路上行駛,需要識別各種交通標(biāo)志和障礙物。以下關(guān)于自動駕駛中計算機(jī)視覺任務(wù)的描述,正確的是:()A.只需對前方物體進(jìn)行簡單的圖像分類,就能實現(xiàn)安全的自動駕駛B.準(zhǔn)確的目標(biāo)檢測和語義分割對于理解復(fù)雜的道路場景至關(guān)重要C.計算機(jī)視覺在自動駕駛中作用不大,主要依靠其他傳感器如雷達(dá)D.對于交通標(biāo)志的識別,顏色信息比形狀和圖案信息更重要23、目標(biāo)檢測是計算機(jī)視覺中的重要任務(wù)之一,旨在定位和識別圖像中的多個目標(biāo)。假設(shè)我們要在城市街道的圖像中檢測行人和車輛。對于處理這種復(fù)雜場景的目標(biāo)檢測任務(wù),以下哪種技術(shù)通常能提供更準(zhǔn)確的檢測結(jié)果?()A.基于滑動窗口的傳統(tǒng)目標(biāo)檢測方法B.基于區(qū)域提議的目標(biāo)檢測算法,如R-CNN系列C.基于回歸的一階段目標(biāo)檢測算法,如YOLO系列D.基于聚類的目標(biāo)檢測方法24、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時,提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP25、計算機(jī)視覺中的車牌識別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個高速公路收費(fèi)站實現(xiàn)準(zhǔn)確的車牌識別,以下關(guān)于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運(yùn)行D.車牌識別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)26、在計算機(jī)視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測是重要功能之一。假設(shè)要在一個倉庫的監(jiān)控視頻中檢測出異常的人員活動或物品移動。以下哪種異常事件檢測方法在處理這種大規(guī)模視頻數(shù)據(jù)時能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測B.基于統(tǒng)計模型的檢測C.基于深度學(xué)習(xí)的檢測D.基于人工觀察的檢測27、計算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細(xì)節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學(xué)習(xí)的方法D.基于學(xué)習(xí)字典的方法28、在一個基于計算機(jī)視覺的工業(yè)質(zhì)量檢測系統(tǒng)中,需要檢測產(chǎn)品表面的微小缺陷,如劃痕、凹坑等。由于缺陷的尺寸較小且形態(tài)多樣,以下哪種圖像處理算法可能對缺陷檢測最為有效?()A.邊緣檢測算法B.形態(tài)學(xué)操作C.閾值分割算法D.霍夫變換29、在計算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要跟蹤一個在人群中移動的物體。以下關(guān)于跟蹤算法的選擇,哪一項是需要著重考慮的?()A.算法對目標(biāo)外觀變化的適應(yīng)性B.算法的計算復(fù)雜度,越低越好C.算法是否能夠處理多個同時移動的目標(biāo)D.算法在處理靜態(tài)場景時的性能30、在計算機(jī)視覺的圖像特征提取中,假設(shè)要提取對光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計算復(fù)雜度高,實時性差B.HOG特征對光照變化適應(yīng)性強(qiáng),但對旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達(dá)能力有限D(zhuǎn).沒有一種特征提取方法能夠同時滿足對光照、旋轉(zhuǎn)和縮放的不變性要求二、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)運(yùn)用計算機(jī)視覺技術(shù),對飛機(jī)機(jī)身的表面缺陷進(jìn)行檢測。2、(本題5分)設(shè)計一個程序,通過計算機(jī)視覺識別不同品牌的相機(jī)。3、(本題5分)基于計算機(jī)視覺的智能農(nóng)業(yè)灌溉系統(tǒng),根據(jù)作物生長情況精準(zhǔn)控制灌溉量。4、(本題5分)運(yùn)用圖像分類技術(shù),對不同種類的木雕進(jìn)行分類。5、(本題5分)開發(fā)一個可以識別不同種類??苿游锏挠嬎銠C(jī)視覺應(yīng)用。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論