香港科技大學(xué)(廣州)《機(jī)器學(xué)習(xí)及其應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
香港科技大學(xué)(廣州)《機(jī)器學(xué)習(xí)及其應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
香港科技大學(xué)(廣州)《機(jī)器學(xué)習(xí)及其應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
香港科技大學(xué)(廣州)《機(jī)器學(xué)習(xí)及其應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
香港科技大學(xué)(廣州)《機(jī)器學(xué)習(xí)及其應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)香港科技大學(xué)(廣州)

《機(jī)器學(xué)習(xí)及其應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在開(kāi)發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶的短期興趣和長(zhǎng)期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對(duì)抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能2、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對(duì)性能沒(méi)有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)3、在一個(gè)分類問(wèn)題中,如果需要對(duì)新出現(xiàn)的類別進(jìn)行快速適應(yīng)和學(xué)習(xí),以下哪種模型具有較好的靈活性?()A.在線學(xué)習(xí)模型B.增量學(xué)習(xí)模型C.遷移學(xué)習(xí)模型D.以上模型都可以4、想象一個(gè)文本分類的任務(wù),需要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等??紤]到詞匯的多樣性和語(yǔ)義的復(fù)雜性。以下哪種詞向量表示方法可能是最適合的?()A.One-Hot編碼,簡(jiǎn)單直觀,但向量維度高且稀疏B.詞袋模型(BagofWords),忽略詞序但計(jì)算簡(jiǎn)單C.分布式詞向量,如Word2Vec或GloVe,能夠捕捉詞與詞之間的語(yǔ)義關(guān)系,但對(duì)多義詞處理有限D(zhuǎn).基于Transformer的預(yù)訓(xùn)練語(yǔ)言模型生成的詞向量,具有強(qiáng)大的語(yǔ)言理解能力,但計(jì)算成本高5、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),除了準(zhǔn)確性等常見(jiàn)指標(biāo)外,還可以使用混淆矩陣來(lái)更詳細(xì)地分析模型的性能。對(duì)于一個(gè)二分類問(wèn)題,混淆矩陣包含了真陽(yáng)性(TP)、真陰性(TN)、假陽(yáng)性(FP)和假陰性(FN)等信息。以下哪個(gè)指標(biāo)可以通過(guò)混淆矩陣計(jì)算得到,并且對(duì)于不平衡數(shù)據(jù)集的評(píng)估較為有效?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)6、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以7、在自然語(yǔ)言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是8、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。假設(shè)我們有一個(gè)數(shù)據(jù)集,包含了房屋的面積、房間數(shù)量、地理位置等特征,以及對(duì)應(yīng)的房?jī)r(jià)。如果我們想要使用監(jiān)督學(xué)習(xí)算法來(lái)預(yù)測(cè)新房屋的價(jià)格,以下哪種算法可能是最合適的()A.K-Means聚類算法B.決策樹(shù)算法C.主成分分析(PCA)D.獨(dú)立成分分析(ICA)9、對(duì)于一個(gè)高維度的數(shù)據(jù),在進(jìn)行特征選擇時(shí),以下哪種方法可以有效地降低維度()A.遞歸特征消除(RFE)B.皮爾遜相關(guān)系數(shù)C.方差分析(ANOVA)D.以上方法都可以10、假設(shè)正在研究一個(gè)文本生成任務(wù),例如生成新聞文章。以下哪種深度學(xué)習(xí)模型架構(gòu)在自然語(yǔ)言生成中表現(xiàn)出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)C.門控循環(huán)單元(GRU)D.以上模型都常用于文本生成11、考慮一個(gè)圖像分類任務(wù),使用深度學(xué)習(xí)模型進(jìn)行訓(xùn)練。在訓(xùn)練過(guò)程中,如果發(fā)現(xiàn)模型在訓(xùn)練集上的準(zhǔn)確率很高,但在驗(yàn)證集上的準(zhǔn)確率較低,可能存在以下哪種問(wèn)題?()A.模型欠擬合,需要增加模型的復(fù)雜度B.數(shù)據(jù)預(yù)處理不當(dāng),需要重新處理數(shù)據(jù)C.模型過(guò)擬合,需要采取正則化措施D.訓(xùn)練數(shù)據(jù)量不足,需要增加更多的數(shù)據(jù)12、假設(shè)正在研究一個(gè)語(yǔ)音合成任務(wù),需要生成自然流暢的語(yǔ)音。以下哪種技術(shù)在語(yǔ)音合成中起到關(guān)鍵作用?()A.聲碼器B.文本到語(yǔ)音轉(zhuǎn)換模型C.語(yǔ)音韻律模型D.以上技術(shù)都很重要13、在一個(gè)氣候預(yù)測(cè)的研究中,需要根據(jù)歷史的氣象數(shù)據(jù),包括溫度、濕度、氣壓等,來(lái)預(yù)測(cè)未來(lái)一段時(shí)間的天氣狀況。數(shù)據(jù)具有季節(jié)性、周期性和長(zhǎng)期趨勢(shì)等特征。以下哪種預(yù)測(cè)方法可能是最有效的?()A.簡(jiǎn)單的線性時(shí)間序列模型,如自回歸移動(dòng)平均(ARMA)模型,適用于平穩(wěn)數(shù)據(jù),但對(duì)復(fù)雜模式的捕捉能力有限B.季節(jié)性自回歸整合移動(dòng)平均(SARIMA)模型,考慮了季節(jié)性因素,但對(duì)于非線性和突變的情況處理能力不足C.基于深度學(xué)習(xí)的長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)與門控循環(huán)單元(GRU),能夠處理長(zhǎng)序列和復(fù)雜的非線性關(guān)系,但需要大量數(shù)據(jù)和計(jì)算資源D.結(jié)合多種傳統(tǒng)時(shí)間序列模型和機(jī)器學(xué)習(xí)算法的集成方法,綜合各自的優(yōu)勢(shì),但模型復(fù)雜度和調(diào)參難度較高14、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在非線性關(guān)系并且噪聲較大,以下哪種模型可能更適合?()A.多項(xiàng)式回歸B.高斯過(guò)程回歸C.嶺回歸D.Lasso回歸15、在進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練時(shí),過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)我們正在訓(xùn)練一個(gè)決策樹(shù)模型來(lái)預(yù)測(cè)客戶是否會(huì)購(gòu)買某種產(chǎn)品,給定了客戶的個(gè)人信息和購(gòu)買歷史等數(shù)據(jù)。以下關(guān)于過(guò)擬合的描述和解決方法,哪一項(xiàng)是錯(cuò)誤的?()A.過(guò)擬合表現(xiàn)為模型在訓(xùn)練集上表現(xiàn)很好,但在測(cè)試集上表現(xiàn)不佳B.增加訓(xùn)練數(shù)據(jù)的數(shù)量可以有效地減少過(guò)擬合的發(fā)生C.對(duì)決策樹(shù)進(jìn)行剪枝操作,即刪除一些不重要的分支,可以防止過(guò)擬合D.降低模型的復(fù)雜度,例如減少?zèng)Q策樹(shù)的深度,會(huì)導(dǎo)致模型的擬合能力下降,無(wú)法解決過(guò)擬合問(wèn)題二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)什么是決策樹(shù)?它的優(yōu)點(diǎn)和缺點(diǎn)有哪些?2、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)中在線學(xué)習(xí)的特點(diǎn)和應(yīng)用。3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中聯(lián)邦學(xué)習(xí)的框架和應(yīng)用。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)詳細(xì)闡述在圖像檢索任務(wù)中,機(jī)器學(xué)習(xí)算法在特征提取和相似性度量方面的應(yīng)用。分析如何提高圖像檢索的準(zhǔn)確性和效率。2、(本題5分)分析機(jī)器學(xué)習(xí)在自然語(yǔ)言處理中的應(yīng)用。舉例說(shuō)明機(jī)器學(xué)習(xí)算法在文本分類、機(jī)器翻譯、情感分析等任務(wù)中的應(yīng)用,并探討自然語(yǔ)言處理中機(jī)器學(xué)習(xí)面臨的問(wèn)題及解決方案。3、(本題5分)分析深度學(xué)習(xí)中的自編碼器的原理、應(yīng)用及與其他算法的結(jié)合,討論其在數(shù)據(jù)壓縮和特征提取中的作用。4、(本題5分)論述機(jī)器學(xué)習(xí)在環(huán)境監(jiān)測(cè)領(lǐng)域的應(yīng)用,如空氣質(zhì)量預(yù)測(cè)、水質(zhì)監(jiān)測(cè)等,討論其對(duì)環(huán)境保護(hù)的意義。5、(本題5分)論述時(shí)間序列預(yù)測(cè)中,傳統(tǒng)機(jī)器學(xué)習(xí)算法(如ARIMA、SARIMA)和深度學(xué)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論