遼寧省鳳城市2024-2025學(xué)年高三第二次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試題含解析_第1頁
遼寧省鳳城市2024-2025學(xué)年高三第二次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試題含解析_第2頁
遼寧省鳳城市2024-2025學(xué)年高三第二次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試題含解析_第3頁
遼寧省鳳城市2024-2025學(xué)年高三第二次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試題含解析_第4頁
遼寧省鳳城市2024-2025學(xué)年高三第二次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

遼寧省鳳城市2024-2025學(xué)年高三第二次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實(shí)數(shù),則實(shí)數(shù)a等于()A. B. C.- D.-2.把函數(shù)的圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實(shí)數(shù)的最小值是()A. B. C. D.3.已知數(shù)列的前n項(xiàng)和為,,且對(duì)于任意,滿足,則()A. B. C. D.4.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.165.設(shè),命題“存在,使方程有實(shí)根”的否定是()A.任意,使方程無實(shí)根B.任意,使方程有實(shí)根C.存在,使方程無實(shí)根D.存在,使方程有實(shí)根6.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項(xiàng)和,若存在使得,則()A.10 B.11 C.12 D.138.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)9.已知是橢圓和雙曲線的公共焦點(diǎn),是它們的-一個(gè)公共點(diǎn),且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.10.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.11.已知集合,集合,則A. B.或C. D.12.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則________.14.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為__________.15.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是__________.16.已知數(shù)列為等比數(shù)列,,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項(xiàng)均不相等的等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值19.(12分)已知函數(shù)()(1)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的極值;(2)當(dāng)時(shí),對(duì)于任意,當(dāng)時(shí),不等式恒成立,求出實(shí)數(shù)的取值范圍.20.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.21.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點(diǎn)P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長,若不存在,請(qǐng)說明理由.22.(10分)車工劉師傅利用數(shù)控車床為某公司加工一種高科技易損零件,對(duì)之前加工的100個(gè)零件的加工時(shí)間進(jìn)行統(tǒng)計(jì),結(jié)果如下:加工1個(gè)零件用時(shí)(分鐘)20253035頻數(shù)(個(gè))15304015以加工這100個(gè)零件用時(shí)的頻率代替概率.(1)求的分布列與數(shù)學(xué)期望;(2)劉師傅準(zhǔn)備給幾個(gè)徒弟做一個(gè)加工該零件的講座,用時(shí)40分鐘,另外他打算在講座前、講座后各加工1個(gè)該零件作示范.求劉師傅講座及加工2個(gè)零件作示范的總時(shí)間不超過100分鐘的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】分析:計(jì)算,由z1,是實(shí)數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實(shí)數(shù),所以,即.故選A.點(diǎn)睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.2.A【解析】

先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對(duì)稱性可求實(shí)數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個(gè)單位長度,所得圖象對(duì)應(yīng)的函數(shù)解析式為,故.令,,解得,.因?yàn)闉榕己瘮?shù),故直線為其圖象的對(duì)稱軸,令,,故,,因?yàn)椋?,?dāng)時(shí),.故選:A.本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對(duì)自變量做加減,比如把的圖象向右平移1個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對(duì)稱軸,則有,本題屬于中檔題.3.D【解析】

利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.4.D【解析】

根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.5.A【解析】

只需將“存在”改成“任意”,有實(shí)根改成無實(shí)根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實(shí)根”的否定是“任意,使方程無實(shí)根”.故選:A本題考查含有一個(gè)量詞的命題的否定,此類問題要注意在兩個(gè)方面作出變化:1.量詞,2.結(jié)論,是一道基礎(chǔ)題.6.A【解析】

設(shè)成立;反之,滿足,但,故選A.7.D【解析】

利用等差數(shù)列的通項(xiàng)公式可得,再利用等差數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時(shí),.故選:D本題考查了等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.8.C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.9.A【解析】

設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡得,即.故選:A本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.10.A【解析】

首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.11.C【解析】

由可得,解得或,所以或,又,所以,故選C.12.C【解析】

由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,計(jì)算程序框圖的運(yùn)行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)垂直向量的坐標(biāo)表示可得出關(guān)于實(shí)數(shù)的等式,即可求得實(shí)數(shù)的值.【詳解】,且,則,解得.故答案為:.本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標(biāo)表示,考查計(jì)算能力,屬于基礎(chǔ)題.14..【解析】分析:由題意結(jié)合古典概型計(jì)算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的下等馬,田忌的上等馬對(duì)齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點(diǎn)睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時(shí),用列舉法把所有基本事件一一列出時(shí),要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計(jì)數(shù)原理的正確使用.15.【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個(gè)零點(diǎn),∴方程f(x)?g(x)=0有四個(gè)解,即f(x)+f(2?x)?b=0有四個(gè)解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個(gè)交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.16.81【解析】

設(shè)數(shù)列的公比為,利用等比數(shù)列通項(xiàng)公式求出,代入等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)數(shù)列的公比為,由題意知,因?yàn)椋傻缺葦?shù)列通項(xiàng)公式可得,,解得,由等比數(shù)列通項(xiàng)公式可得,.故答案為:本題考查等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】試題分析:(1)設(shè)公差為,列出關(guān)于的方程組,求解的值,即可得到數(shù)列的通項(xiàng)公式;(2)由(1)可得,即可利用裂項(xiàng)相消求解數(shù)列的和.試題解析:(1)設(shè)公差為.由已知得,解得或(舍去),所以,故.(2),考點(diǎn):等差數(shù)列的通項(xiàng)公式;數(shù)列的求和.18.(1);(2)【解析】

(1)由得,兩式相減可得是從第二項(xiàng)開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當(dāng)時(shí),,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)?,,兩式相減得:,即,是從第二項(xiàng)開始的等比數(shù)列,∵∴,則,;(2),當(dāng)時(shí),;當(dāng)時(shí),設(shè)遞增,,所以實(shí)數(shù)的最小值.本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.19.(1)極小值為,極大值為.(2)【解析】

(1)根據(jù)斜線的斜率即可求得參數(shù),再對(duì)函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對(duì)目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域?yàn)?,,,,可知,,解得,,可知在,時(shí),,函數(shù)單調(diào)遞增,在時(shí),,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.本題考查由切線的斜率求參數(shù)的值,以及對(duì)具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點(diǎn)在于對(duì)目標(biāo)式的變形,屬綜合性中檔題.20.(1)證明見解析(2)【解析】

(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點(diǎn),由等腰三角形性質(zhì)可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標(biāo)系,以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值.【詳解】(1)如圖,設(shè)與相交于點(diǎn),連接,又為菱形,故,為的中點(diǎn).又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.不妨設(shè),則,,則,,,,,,設(shè)為平面的法向量,則即可取,設(shè)為平面的法向量,則即可取,所以.所以二面角的余弦值為0.本題主要考查線面垂直的判定定理,面面垂直的判定定理的應(yīng)用,以及利用向量法求二面角,意在考查學(xué)生的直觀想象能力,邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.21.(I)見解析(II)(III)【解析】試題分析:(Ⅰ)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,且,據(jù)此有,則平面.(Ⅱ)由題意可得平面的法向量,結(jié)合(Ⅰ)的結(jié)論可得,即平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,則,而平面的法向量,據(jù)此可得,解方程有或.據(jù)此計(jì)算可得.試題解析:(Ⅰ)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖,則,,,,∴,,設(shè)平面的法向量,∴不妨設(shè),又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,設(shè)平面的法向量,∴不妨設(shè),∴,∴平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,∴,∴,又∵平面的法向量,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論