




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁瓊臺師范學(xué)院《預(yù)測方法和技術(shù)》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹狀圖2、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測缺失值D.以上方法均可3、數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。以下關(guān)于假設(shè)檢驗(yàn)的描述,錯誤的是:()A.原假設(shè)和備擇假設(shè)是相互對立的B.當(dāng)P值小于顯著性水平時(shí),拒絕原假設(shè)C.第一類錯誤是指錯誤地拒絕了原假設(shè)D.樣本量越大,越容易犯第二類錯誤4、數(shù)據(jù)分析中的決策樹算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們要使用決策樹算法進(jìn)行分類任務(wù)。以下關(guān)于決策樹的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹通過對數(shù)據(jù)的遞歸劃分來構(gòu)建分類規(guī)則B.可以使用信息增益或基尼指數(shù)來選擇最優(yōu)的劃分屬性C.決策樹容易受到噪聲數(shù)據(jù)的影響,導(dǎo)致過擬合D.決策樹的深度越深,分類效果就一定越好5、在進(jìn)行數(shù)據(jù)分析時(shí),需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性6、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類別占比極少,以下哪種方法可以處理這種不平衡問題?()A.過采樣B.欠采樣C.調(diào)整分類閾值D.以上都是7、對于一個(gè)具有多個(gè)特征的數(shù)據(jù)集,若要進(jìn)行特征縮放,以下哪種方法可以將特征值映射到特定的區(qū)間?()A.最小-最大縮放B.標(biāo)準(zhǔn)化C.正則化D.以上都是8、在數(shù)據(jù)分析項(xiàng)目中,需要對兩個(gè)不同來源的數(shù)據(jù)集進(jìn)行整合和融合,例如一個(gè)是銷售數(shù)據(jù),另一個(gè)是客戶信息數(shù)據(jù)。由于兩個(gè)數(shù)據(jù)集的格式和字段可能不一致,以下哪種方法可能有助于順利完成數(shù)據(jù)整合?()A.手動匹配和轉(zhuǎn)換B.使用數(shù)據(jù)清洗工具C.建立數(shù)據(jù)倉庫D.以上都是9、在進(jìn)行數(shù)據(jù)倉庫設(shè)計(jì)時(shí),需要考慮數(shù)據(jù)的存儲和組織方式。假設(shè)一個(gè)企業(yè)有大量的銷售、庫存和客戶數(shù)據(jù),以下哪種數(shù)據(jù)模型可能最適合用于構(gòu)建數(shù)據(jù)倉庫?()A.星型模型B.雪花模型C.關(guān)系模型D.網(wǎng)狀模型10、假設(shè)要分析消費(fèi)者對新產(chǎn)品的反饋意見,以下關(guān)于意見分析方法的描述,正確的是:()A.人工閱讀所有反饋意見,憑主觀判斷總結(jié)主要觀點(diǎn)B.利用自然語言處理技術(shù)對反饋進(jìn)行分類和情感分析C.只關(guān)注反饋中的負(fù)面意見,忽略正面意見D.對于模糊不清的反饋意見,直接忽略不計(jì)11、對于數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘,假設(shè)要從超市的銷售數(shù)據(jù)中發(fā)現(xiàn)商品之間的購買關(guān)聯(lián),例如哪些商品經(jīng)常一起被購買。以下哪種關(guān)聯(lián)規(guī)則挖掘算法可能會產(chǎn)生更有價(jià)值的結(jié)果?()A.Apriori算法,基于頻繁項(xiàng)集挖掘B.FP-Growth算法,提高挖掘效率C.Eclat算法,基于垂直數(shù)據(jù)格式D.不進(jìn)行關(guān)聯(lián)規(guī)則挖掘,依靠直覺判斷商品關(guān)聯(lián)12、回歸分析是數(shù)據(jù)分析中的常用方法。假設(shè)要研究廣告投入與銷售額之間的關(guān)系,以下關(guān)于回歸分析的描述,正確的是:()A.簡單線性回歸足以捕捉廣告投入和銷售額之間的復(fù)雜非線性關(guān)系B.多元線性回歸中,自變量越多,模型的解釋能力就越強(qiáng)C.在建立回歸模型前,不需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.回歸模型的擬合優(yōu)度(R2)越高,說明模型對數(shù)據(jù)的擬合效果越好13、數(shù)據(jù)分析中的實(shí)時(shí)數(shù)據(jù)分析要求快速處理和響應(yīng)數(shù)據(jù)。假設(shè)要構(gòu)建一個(gè)實(shí)時(shí)監(jiān)控系統(tǒng)來跟蹤網(wǎng)站的流量變化,以下關(guān)于實(shí)時(shí)數(shù)據(jù)分析技術(shù)選擇的描述,正確的是:()A.選擇傳統(tǒng)的批處理技術(shù),不考慮實(shí)時(shí)性要求B.采用復(fù)雜且難以維護(hù)的實(shí)時(shí)分析框架,不考慮實(shí)際需求和資源限制C.根據(jù)數(shù)據(jù)量、延遲要求和技術(shù)團(tuán)隊(duì)的能力,選擇合適的實(shí)時(shí)數(shù)據(jù)分析技術(shù),如Flink、KafkaStreams等,并進(jìn)行性能優(yōu)化和監(jiān)控D.認(rèn)為實(shí)時(shí)數(shù)據(jù)分析不需要考慮數(shù)據(jù)的準(zhǔn)確性和完整性14、在進(jìn)行數(shù)據(jù)挖掘任務(wù)時(shí),關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中的頻繁項(xiàng)集。假設(shè)在一個(gè)超市購物數(shù)據(jù)集中,發(fā)現(xiàn)面包、牛奶和雞蛋經(jīng)常一起被購買。如果要進(jìn)一步提高關(guān)聯(lián)規(guī)則的實(shí)用性,以下哪個(gè)步驟可能是必要的?()A.增加更多商品種類到分析中B.考慮商品的促銷活動對購買行為的影響C.分析不同時(shí)間段的購買模式差異D.以上步驟都可能有幫助15、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是存儲和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉庫的說法中,錯誤的是?()A.數(shù)據(jù)倉庫可以整合來自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉庫中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉庫只適用于大型企業(yè),對于中小企業(yè)來說沒有必要建設(shè)二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋數(shù)據(jù)挖掘中的情感分析在客戶反饋處理中的應(yīng)用,說明如何提取和分析客戶的情感傾向。2、(本題5分)簡述數(shù)據(jù)挖掘中的圖挖掘,包括社交網(wǎng)絡(luò)分析、知識圖譜等,說明其應(yīng)用場景和相關(guān)技術(shù)。3、(本題5分)簡述數(shù)據(jù)分析師如何適應(yīng)不斷變化的數(shù)據(jù)分析技術(shù)和業(yè)務(wù)需求,包括學(xué)習(xí)新技能、更新知識體系等。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)對于企業(yè)的數(shù)字化轉(zhuǎn)型戰(zhàn)略制定,論述如何運(yùn)用數(shù)據(jù)分析評估現(xiàn)有業(yè)務(wù)流程和數(shù)字化潛力,確定轉(zhuǎn)型的重點(diǎn)和方向。2、(本題5分)在物流企業(yè)的成本管理中,數(shù)據(jù)分析可以降低運(yùn)輸和倉儲成本。以某綜合物流企業(yè)為例,討論如何運(yùn)用數(shù)據(jù)分析來分析成本結(jié)構(gòu)、尋找成本節(jié)約的機(jī)會、評估成本控制措施的效果,以及如何在成本優(yōu)化的同時(shí)保持服務(wù)質(zhì)量。3、(本題5分)社交媒體廣告投放需要精準(zhǔn)的數(shù)據(jù)分析。以某社交媒體平臺為例,分析如何利用數(shù)據(jù)分析來確定目標(biāo)受眾、優(yōu)化廣告投放策略、評估廣告效果,以及如何應(yīng)對廣告欺詐和虛假流量的問題。4、(本題5分)隨著智能手機(jī)和移動應(yīng)用的普及,產(chǎn)生了大量的移動數(shù)據(jù)。以某移動運(yùn)營商為例,探討如何運(yùn)用數(shù)據(jù)分析來優(yōu)化網(wǎng)絡(luò)資源配置、提升用戶體驗(yàn)、發(fā)現(xiàn)潛在客戶,以及如何解決數(shù)據(jù)隱私保護(hù)和數(shù)據(jù)安全方面的挑戰(zhàn)。5、(本題5分)在電信客戶服務(wù)中,如何運(yùn)用數(shù)據(jù)分析來識別客戶問題、提升服務(wù)效率和滿意度?請?jiān)敿?xì)分析客戶數(shù)據(jù)的特點(diǎn)和處理方法,以及如何通過數(shù)據(jù)分析改進(jìn)服務(wù)流程和策略。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某在線課程平臺收集了學(xué)生的課程完成率、作業(yè)提交情況、教師評價(jià)等。研究怎樣借助這些數(shù)據(jù)評估課程質(zhì)量和教師教學(xué)效果。2、(本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 奇脈的健康宣教
- 手術(shù)后的護(hù)理培訓(xùn)
- 髓系白血病的健康宣教
- 新生兒消化不良的健康宣教
- 白細(xì)胞減少的健康宣教
- 2025國際建筑工程合同管理與執(zhí)行
- 四肢血管損傷的健康宣教
- 手外傷的護(hù)理查房
- 溫濕度管理方法
- 先天性結(jié)腸狹窄的健康宣教
- 小學(xué)女生生青春期心理健康教育五六年級(共14張課件)
- 疫苗預(yù)防接種知識競賽題庫及答案2022
- DL∕T 1084-2021 風(fēng)力發(fā)電場噪聲限值及測量方法
- NB-T47023-2012長頸對焊法蘭
- 預(yù)制混凝土剪力墻吊裝施工技術(shù)講解
- 2024年浙江長征職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫含答案解析
- 杉篙架搭設(shè)安全技術(shù)交底
- 《電化學(xué)儲能電站監(jiān)控系統(tǒng)技術(shù)規(guī)范》
- 施工現(xiàn)場常見問題解決的協(xié)調(diào)溝通技巧與有效方案研究
- CJJ-181-2012(精華部分)城鎮(zhèn)排水管道檢測與評估技術(shù)規(guī)程
- 手術(shù)室對病理標(biāo)本處置出現(xiàn)錯誤的原因分析品管圈魚骨圖柏拉圖
評論
0/150
提交評論