黔南民族醫(yī)學(xué)高等??茖W(xué)?!禨PSS》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
黔南民族醫(yī)學(xué)高等??茖W(xué)?!禨PSS》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
黔南民族醫(yī)學(xué)高等??茖W(xué)?!禨PSS》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
黔南民族醫(yī)學(xué)高等??茖W(xué)校《SPSS》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
黔南民族醫(yī)學(xué)高等??茖W(xué)?!禨PSS》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁黔南民族醫(yī)學(xué)高等??茖W(xué)?!禨PSS》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而非僅僅是相關(guān)性。假設(shè)你想研究廣告投入與產(chǎn)品銷售之間的關(guān)系,以下關(guān)于因果推斷方法的選擇,哪一項是最關(guān)鍵的?()A.進(jìn)行隨機(jī)對照實驗,控制其他因素來確定因果關(guān)系B.基于觀察數(shù)據(jù),使用回歸分析來推斷因果關(guān)系C.僅僅依靠相關(guān)系數(shù)來判斷因果關(guān)系D.主觀猜測和經(jīng)驗判斷因果關(guān)系2、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)在過去十年間的經(jīng)濟(jì)增長趨勢,以下關(guān)于數(shù)據(jù)可視化的描述,哪一項是不正確的?()A.可以使用折線圖清晰地呈現(xiàn)經(jīng)濟(jì)指標(biāo)隨時間的變化B.柱狀圖能夠有效地對比不同地區(qū)在特定時間點(diǎn)的經(jīng)濟(jì)數(shù)值C.為了使圖表更美觀,可以添加過多的裝飾元素,即使這可能會干擾數(shù)據(jù)的解讀D.選擇合適的顏色和標(biāo)記,能夠增強(qiáng)圖表的可讀性和吸引力3、在進(jìn)行數(shù)據(jù)探索性分析時,以下關(guān)于發(fā)現(xiàn)數(shù)據(jù)中的異常值的方法,哪一項是最常用的?()A.計算數(shù)據(jù)的均值和標(biāo)準(zhǔn)差,超出一定范圍的值視為異常值B.繪制箱線圖,觀察超出箱體范圍的值C.對數(shù)據(jù)進(jìn)行排序,查看兩端的值D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行檢查4、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時研究多個自變量對因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個變量與因變量的關(guān)系5、在數(shù)據(jù)分析中,模型的選擇和調(diào)優(yōu)需要根據(jù)數(shù)據(jù)和問題的特點(diǎn)進(jìn)行。假設(shè)我們要解決一個分類問題。以下關(guān)于模型選擇和調(diào)優(yōu)的描述,哪一項是不準(zhǔn)確的?()A.不同的模型在不同的數(shù)據(jù)集上表現(xiàn)可能不同,需要進(jìn)行試驗和比較B.可以通過調(diào)整模型的超參數(shù)來優(yōu)化模型的性能C.模型越復(fù)雜,性能就一定越好,應(yīng)該優(yōu)先選擇復(fù)雜的模型D.可以使用網(wǎng)格搜索、隨機(jī)搜索等方法進(jìn)行超參數(shù)調(diào)優(yōu)6、在進(jìn)行數(shù)據(jù)分析時,若要研究不同地區(qū)消費(fèi)者對某一產(chǎn)品的購買意愿差異,以下哪種數(shù)據(jù)分析方法最為適用?()A.描述性統(tǒng)計分析B.相關(guān)性分析C.方差分析D.回歸分析7、在數(shù)據(jù)倉庫和數(shù)據(jù)集市的建設(shè)中,需要考慮數(shù)據(jù)的整合和存儲。假設(shè)要為一個企業(yè)構(gòu)建數(shù)據(jù)存儲架構(gòu),以下關(guān)于數(shù)據(jù)倉庫和數(shù)據(jù)集市選擇的描述,正確的是:()A.只建立數(shù)據(jù)倉庫,不考慮數(shù)據(jù)集市,認(rèn)為數(shù)據(jù)倉庫能夠滿足所有分析需求B.盲目建立數(shù)據(jù)集市,不與數(shù)據(jù)倉庫進(jìn)行有效的集成和協(xié)調(diào)C.根據(jù)企業(yè)的規(guī)模、業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn),合理規(guī)劃數(shù)據(jù)倉庫和數(shù)據(jù)集市的架構(gòu),確保數(shù)據(jù)的一致性和可用性,并明確它們在數(shù)據(jù)分析中的角色和作用D.不考慮數(shù)據(jù)的更新和維護(hù),只關(guān)注初始的建設(shè)8、在數(shù)據(jù)分析的實時數(shù)據(jù)分析場景中,假設(shè)要對不斷產(chǎn)生的數(shù)據(jù)流進(jìn)行快速處理和分析,以下哪種技術(shù)或架構(gòu)可能是合適的選擇?()A.流處理框架,如ApacheFlinkB.批處理框架,如ApacheHadoopC.關(guān)系型數(shù)據(jù)庫,進(jìn)行實時查詢D.不進(jìn)行實時處理,先存儲數(shù)據(jù)再事后分析9、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的步驟有很多,其中數(shù)據(jù)清理是一個重要的步驟。以下關(guān)于數(shù)據(jù)清理的描述中,錯誤的是?()A.數(shù)據(jù)清理可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)清理可以填補(bǔ)數(shù)據(jù)中的缺失值C.數(shù)據(jù)清理可以統(tǒng)一數(shù)據(jù)的格式和單位D.數(shù)據(jù)清理可以增加數(shù)據(jù)的數(shù)量和多樣性10、在數(shù)據(jù)分析中,模型的可解釋性對于理解和信任模型結(jié)果很重要。假設(shè)你建立了一個復(fù)雜的機(jī)器學(xué)習(xí)模型,以下關(guān)于提高模型可解釋性的方法,哪一項是最有效的?()A.使用黑盒模型,不關(guān)注可解釋性B.繪制模型的決策樹,直觀展示決策過程C.只關(guān)注模型的預(yù)測準(zhǔn)確率,不考慮解釋性D.對模型的內(nèi)部工作原理不做任何解釋,讓用戶自行理解11、對于數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘,假設(shè)要從超市的銷售數(shù)據(jù)中發(fā)現(xiàn)商品之間的購買關(guān)聯(lián),例如哪些商品經(jīng)常一起被購買。以下哪種關(guān)聯(lián)規(guī)則挖掘算法可能會產(chǎn)生更有價值的結(jié)果?()A.Apriori算法,基于頻繁項集挖掘B.FP-Growth算法,提高挖掘效率C.Eclat算法,基于垂直數(shù)據(jù)格式D.不進(jìn)行關(guān)聯(lián)規(guī)則挖掘,依靠直覺判斷商品關(guān)聯(lián)12、在進(jìn)行數(shù)據(jù)可視化時,若要同時展示多個變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹狀圖13、在數(shù)據(jù)分析中,數(shù)據(jù)安全是一個重要的問題。以下關(guān)于數(shù)據(jù)安全的描述中,錯誤的是?()A.數(shù)據(jù)安全包括數(shù)據(jù)的保密性、完整性和可用性等方面B.數(shù)據(jù)安全問題可能會導(dǎo)致數(shù)據(jù)泄露、篡改和丟失等后果C.提高數(shù)據(jù)安全可以通過加密、備份和訪問控制等方法來實現(xiàn)D.數(shù)據(jù)安全只與數(shù)據(jù)的存儲和傳輸有關(guān),與數(shù)據(jù)分析的過程無關(guān)14、假設(shè)要分析不同產(chǎn)品類別的市場份額及其變化趨勢,以下關(guān)于市場份額分析的描述,正確的是:()A.只計算當(dāng)前的市場份額,不考慮歷史數(shù)據(jù)B.市場份額的變化趨勢可以通過簡單的差值計算得出C.考慮競爭對手的策略和市場動態(tài)對市場份額的影響,進(jìn)行綜合分析D.市場份額分析只適用于成熟的市場,對于新興市場沒有意義15、在進(jìn)行數(shù)據(jù)融合時,將多個數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合16、在數(shù)據(jù)分析中,以下哪種抽樣方法能夠保證樣本對總體具有較好的代表性,同時又能降低抽樣誤差?()A.簡單隨機(jī)抽樣B.分層抽樣C.整群抽樣D.系統(tǒng)抽樣17、在進(jìn)行數(shù)據(jù)分析的實驗時,交叉驗證是常用的評估模型穩(wěn)定性的方法。假設(shè)你在比較不同的分類算法,以下關(guān)于交叉驗證策略的選擇,哪一項是最合理的?()A.簡單隨機(jī)劃分?jǐn)?shù)據(jù)集,進(jìn)行多次訓(xùn)練和驗證B.使用K折交叉驗證,平均多個結(jié)果以獲得更可靠的評估C.采用留一法交叉驗證,確保每個樣本都被用于驗證D.不進(jìn)行交叉驗證,只進(jìn)行一次訓(xùn)練和驗證18、在進(jìn)行數(shù)據(jù)分析時,需要處理數(shù)據(jù)的不平衡問題。假設(shè)要分析信用卡欺詐檢測數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問題時更能提高模型對少數(shù)類(欺詐交易)的識別能力?()A.過采樣B.欠采樣C.合成少數(shù)類過采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用19、數(shù)據(jù)分析過程中,數(shù)據(jù)清洗是重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)清洗目的的說法中,錯誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)質(zhì)量,為后續(xù)分析提供可靠基礎(chǔ)B.統(tǒng)一數(shù)據(jù)格式和單位,使不同來源的數(shù)據(jù)能夠進(jìn)行有效的整合和比較C.數(shù)據(jù)清洗可以增加數(shù)據(jù)的數(shù)量,從而提高數(shù)據(jù)分析結(jié)果的準(zhǔn)確性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性,避免因缺失數(shù)據(jù)而影響分析結(jié)果20、假設(shè)要分析一個市場調(diào)研數(shù)據(jù)集,了解消費(fèi)者對不同品牌、產(chǎn)品特性和價格的偏好。在設(shè)計調(diào)查問卷和收集數(shù)據(jù)時,以下哪個原則可能是最重要的,以確保數(shù)據(jù)的質(zhì)量和有效性?()A.問題的清晰性和簡潔性B.盡量多設(shè)置問題以獲取更多信息C.引導(dǎo)消費(fèi)者給出特定答案D.不考慮消費(fèi)者的反饋二、簡答題(本大題共3個小題,共15分)1、(本題5分)闡述數(shù)據(jù)可視化中的可視化敘事的概念和方法,說明如何通過可視化講述數(shù)據(jù)背后的故事,并舉例說明在數(shù)據(jù)報告中的應(yīng)用。2、(本題5分)在進(jìn)行數(shù)據(jù)分析時,如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?解釋EDA的主要步驟和目的,以及常用的工具和技術(shù)。3、(本題5分)解釋決策樹算法的原理和構(gòu)建過程,舉例說明其在分類和預(yù)測問題中的應(yīng)用,并討論如何避免決策樹的過擬合。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)某在線音樂平臺保存了用戶的音樂偏好、播放列表、收藏歌手等。探討怎樣利用這些數(shù)據(jù)舉辦個性化的線上音樂活動。2、(本題5分)某社交平臺擁有用戶的注冊信息、發(fā)布內(nèi)容、關(guān)注關(guān)系、互動行為等數(shù)據(jù)。研究如何基于這些數(shù)據(jù)進(jìn)行用戶畫像,以便為廣告投放提供精準(zhǔn)定位。3、(本題5分)某在線古玩交易平臺掌握了交易數(shù)據(jù)、藏品類別、買家偏好等。提升平臺的信譽(yù)和交易安全性。4、(本題5分)某汽車租賃公司掌握了不同車型的租賃需求、租賃時長、用戶偏好等。研究怎樣借助這些數(shù)據(jù)優(yōu)化車輛配置和定價策略。5、(本題5分)某在線醫(yī)療平臺保存了患者的病歷數(shù)據(jù)、在線咨詢記錄、藥品購買記錄等。探討怎樣利用這些數(shù)據(jù)改善醫(yī)療服務(wù)質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論