




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AlexanderFelfernig?LudovicoBoratto
MartinStettinger?MarkoTkalcˇicˇ
GroupRecommender
Systems
AnIntroduction
123
AlexanderFelfernig
InstituteforSoftwareTechnology
GrazUniversityofTechnology
Graz,Austria
LudovicoBoratto
EURECAT
CentreTecnológicodeCatalunya
Barcelona,Spain
MartinStettinger
InstituteforSoftwareTechnology
GrazUniversityofTechnology
Graz,Austria
MarkoTkalcˇicˇ
FacultyofComputerScience
FreeUniversityofBozen-Bolzano
Bolzano,Italy
ISSN2191-8112ISSN2191-8120(electronic)
SpringerBriefsinElectricalandComputerEngineering
ISBN978-3-319-75066-8ISBN978-3-319-75067-5(eBook)
/10.1007/978-3-319-75067-5
LibraryofCongressControlNumber:2018930531
?TheAuthor(s)2018
Preface
Recommendersystemshavebecomeafundamentalmeansforprovidingper-
sonalizedguidancetousersintheirsearchesforinterestingorusefulobjects
suchasmovies,songs,restaurants,softwarerequirements,anddigitalcameras.
Althoughmostexistingrecommendersystemssupportsingleusers,therearemany
scenarioswhereitemsareusedbygroups.Theincreasedinterestinrecommendation
technologiesforgroupsmotivatedustowritethisbookonGroupRecommender
Systems.Theoverallpurposeofthisbookistoprovideaneasytounderstand
introductiontothe?eldofgrouprecommendersystems.Itisintendedforpersons
newtothe?eld,andalsoasreferencematerialforresearchersandpractitionersthat
providesanoverviewoftheexistingstateoftheartandissuesforfuturework.
Includedarecontributionsrelatedtoalgorithms,userinterfaces,psychological
issues,andresearchchallenges.Thebookentailsanintroductorypresentation
ofdifferentgrouprecommendationalgorithms.Beyondalgorithms,itdealswith
additionalrelevantaspectssuchasgrouprecommenderuserinterfaces,evaluation
techniques,approachestothehandlingofpreferences,differentwaystoinclude
explanationsintoagrouprecommendationprocess,andpsychologicalfactorsthat
havetobetakenintoaccountwhenbuildinggrouprecommendersystems.Thebook
alsoprovidesanoverviewofgrouprecommendationscenariosthatgobeyondthe
basicrankingofalternatives.Relatedexamplesincludegroup-basedcon?guration,
recommendationofsequencestogroups,resourcebalancingforgroups,andrelease
planningforgroups.
Graz,AustriaAlexanderFelfernig
Barcelona,SpainLudovicoBoratto
Graz,AustriaMartinStettinger
Bolzano,ItalyMarkoTkalcˇicˇ
Jan2018
Contents
PartIGroupRecommendationTechniques
1DecisionTasksandBasicAlgorithms3
1.1Introduction3
1.2CharacteristicsofDecisionTasks4
1.3RecommendationAlgorithmsforIndividualUsers7
1.4RelationshipBetweenAlgorithmsandChoicePatterns19
1.5BookOverview22
References23
2AlgorithmsforGroupRecommendation27
2.1Introduction27
2.2PreferenceAggregationStrategies29
2.3SocialChoiceBasedPreferenceAggregationFunctions31
2.4CollaborativeFilteringforGroups34
2.5Content-BasedFilteringforGroups37
2.6Constraint-BasedRecommendationforGroups40
2.7HandlingInconsistencies44
2.8Critiquing-BasedRecommendationforGroups47
2.9HybridRecommendationforGroups51
2.10MatrixFactorizationforGroups52
2.11ConclusionsandResearchIssues55
References56
3EvaluatingGroupRecommenderSystems59
3.1Introduction59
3.2Classi?cationMetrics60
3.3ErrorMetrics63
3.4RankingMetrics64
3.5CoverageandSerendipity66
3.6ConsensusandFairness67
3.7ConclusionsandResearchIssues69
References70
PartIIGroupRecommenderUserInterfaces
4GroupRecommenderApplications75
4.1Introduction75
4.2MusicRecommendation75
4.3RecommendationofMoviesandTVPrograms78
4.4RecommendationofTravelDestinationsandEvents79
4.5RecommendationofNewsandWebPages81
4.6GroupRecommendersforHealthyLiving82
4.7GroupRecommendersinSoftwareEngineering82
4.8Domain-IndependentGroupRecommenders84
4.9ConclusionsandResearchIssues87
References88
5HandlingPreferences91
5.1Introduction91
5.2CollectingPreferences93
5.3PreferenceHandlingPractices95
5.4ConsistencyManagement97
5.5ConclusionsandResearchIssues98
References99
6ExplanationsforGroups105
6.1Introduction105
6.2CollaborativeFiltering109
6.3Content-BasedFiltering112
6.4Constraint-BasedRecommendation115
6.5Critiquing-BasedRecommendation121
6.6ConclusionsandResearchIssues122
References123
PartIIIGroupDecisionProcesses
7FurtherChoiceScenarios129
7.1Introduction129
7.2Ranking133
7.3Packaging134
7.4Parametrization134
7.5Con?guration135
7.6ReleasePlanning136
7.7Triage137
7.8ResourceBalancing138
7.9Sequencing138
7.10PollsandQuestionnaires140
7.11Voting141
7.12FurtherAspectsofChoiceScenarios141
7.13ConclusionsandResearchIssues143
References143
8BiasesinGroupDecisions145
8.1Introduction145
8.2DecoyEffects146
8.3SerialPositionEffects147
8.4Framing149
8.5Anchoring149
8.6GroupThink150
8.7EmotionalContagion151
8.8Polarization152
8.9ConclusionsandResearchIssues152
References153
9Personality,Emotions,andGroupDynamics157
9.1PersonalityandEmotions157
9.2GroupDynamics159
9.3Example:TakingintoAccountPersonalityandConformity161
9.4ConclusionsandResearchIssues164
References165
10Conclusions169
Index171
PartIGroupRecommendationTechniques
PartIofthisbookfocusesondifferentrecommendationtechniquesforgroups.
InChap.1,recommendersystemsareintroducedasaspeci?ctypeofdecision
supportsystem.Inthiscontext,thebasicapproachesofcollaborative?ltering,
content-based?ltering,constraint-based,critiquing-based,andhybridrecommen-
dationareintroducedwithaworkingexamplefromthedomainoftravel.InChap.2,
weintroducedifferentconceptsofgrouprecommendersystemsandshowhowsuch
systemscanbebuiltonthebasisoftherecommendationapproachesintroducedin
Chap.1.Finally,inChap.3wediscusstechniquesthatcanbeusedtoevaluategroup
recommendersystems.
Chapter1
DecisionTasksandBasicAlgorithms
AlexanderFelfernig,MüslümAtas,andMartinStettinger
AbstractRecommendersystemsaredecisionsupportsystemshelpingusersto
identifyoneormoreitems(solutions)that?ttheirwishesandneeds.Themost
frequentapplicationofrecommendersystemsnowadaysistoproposeitemsto
individualusers.However,therearemanyscenarioswhereagroupofusersshould
receivearecommendation.Forexample,thinkofagroupdecisionregardingthe
nextholidaydestinationoragroupdecisionregardingarestauranttovisitforajoint
dinner.Thegoalofthisbookistoprovideanintroductiontogrouprecommender
systems,i.e.,recommendersystemsthatdeterminerecommendationsforgroups.
Inthischapter,weprovideanintroductiontobasictypesofrecommendation
algorithmsforindividualusersandcharacterizerelateddecisiontasks.Thisintro-
ductionservesasabasisfortheintroductionofgrouprecommendationalgorithms
inChap.2.
1.1Introduction
Arecommendersystemisaspeci?ctypeofadvice-givingordecisionsupport
systemthatguidesusersinapersonalizedwaytointerestingorusefulobjects
inalargespaceofpossibleoptionsorthatproducessuchobjectsasoutput
[14,17,23,29,43,66,76,81,82].Adecisionproblem/taskemergesifaperson
oragroupofpersonshaveanideaaboutadesiredstate[33].Iftherearedifferent
optionstoachievethedesiredstate,thedecisiontasktobesolvedistoidentifyitems
oractionsthathelptoapproachthetargetstateinasuitablefashion.Recommender
systemscanprovidehelpinsuchacontextbytryingto?ndthesuitableitems
oractionsthathelptobestreachtheenvisionedtarget.Arrivingatachoicecan
beseenastheresultofacollaborationbetweentheuserandtherecommender
system.Recommendersystemssupport“good”choiceswithinreasonabletime
spansincludingcorrespondingjusti?cationsprovidedintermsofexplanations
[42,80].
Therearedifferentwaysinwhicharecommendercansupportusersindecision
makingprocesses.First,itcanactasasupporterto?gureoutcandidateitems,i.e.,
alargenumberofalternativesisreducedtoaso-calledconsiderationset—selecting
thefavoriteoptionislefttotheuser.Second,therecommendercanhelptheuser
selectfromtheitemsintheconsiderationset,forexample,byrepresentingthemin
convenientwaysandprovidingexplanationsofwhytheyhavebeenrecommended.
Onlyin“extreme”casesisthedecisionmakingauthoritytakenoverbythe
recommenderitself.Examplesincludemusicrecommendationina?tnessstudio,
therecommendationofinformationunitsonapublicdisplay,andtheautomated
adaptationofparametersettingssuchaslightintensityinasmarthome[50].
Anexampleofasingle-userrecommendationscenarioisthefollowing:when
navigatinganonlinesalesplatformwiththegoalto?ndabookrelatedtothe
topicof,forexample,deeplearning,arecommendersystemwillidentifyrelated
booksandproposethesetotheuseroftheonlineplatform.Inthisscenario,the
envisionedtargetstateisto?ndasuitablebookonthementionedtopicandthe
optionstoachievethisstatearethedifferentexistingbooksonthetopicofdeep
learning.Findingabookinanonlinesalesplatformistypicallyasingleuser
decisionscenario.However,therearealsoscenarioswhereagroupofusershas
tomakeadecision.Inthiscontext,arecommendersystemmusttakeintoaccount
thepotentiallycon?ictingpreferencesofdifferentgroupmembers.Suchasituation
makestherecommendationtaskdifferentandoftenmorechallenging.
Themainfocusofthisbookisrecommendationtechniquesthatprovidehelpin
scenarioswhereagroupofusersisengaged.Inmanyscenarios,thepresentation
ofrecommendationstogroupsisamorenaturalapproachthantryingtoaddress
individualusers[40,56,58].Forexample,musicrecommendationsin?tnessstudios
havetotakeintoaccountthepreferencesofallindividualscurrentlypresentinthe
studio[59].Stakeholdersinasoftwareprojecthavetoestablishagreementregarding
therequirements/featuresthathavetobedevelopedwithinthescopeofthenext
release[64].Personneldecisionsareoftentakeningroups,i.e.,agrouphastodecide
whichjobapplicantwillbehired[78].Groupsoffriendshavetodecideaboutthe
hotelforthenextsummerholidaysoraskiingresortforthenextwinterholidays
[39,61].Apublicdisplayshouldbepersonalizedinordertobeabletodisplay
informationtopersonscurrentlyinthesurrounding[40].Finally,travelgroups
shouldreceiveapersonalizedmuseumguidanceinsuchawaythatthepersonal
preferencesofgroupmembersareful?lled[28,47].
1.2CharacteristicsofDecisionTasks
Decisiontasksdifferwithregardtovariousaspects[69].Inthefollowing,we
introducebasicdimensionsofdecisiontasks(see[33])whichwillhelptobetter
understandwhichdecisionsaresupportedbygrouprecommenders(seeTable1.1).1
1Asmentionedin[33],thischaracterizationofdecisiontasksisnotcompletebutagoodbasisfor
discussingpropertiesrelevantforgrouprecommenders.
Table1.1Characteristicsof
decisiontasks[33]
DimensionCharacteristic
Complexitylow..high
Structurednesslow..high
Decisiontypechoice..design
Sentimentopportunity..threat
Dependenceyes..no
Leveloriginal..meta
Actorperson..group
ComplexityWeinterpretcomplexityofdecisiontasksintermsofthenumberof
decisiondimensionsandthedegreeofiteminvolvement[33,38].Dependingon
theunderlyingitemdomain,humanswillinvestmoreorlesstimetocometo
adecision,i.e.,toachieveanacceptabletrade-offbetweendecisioneffortand
accuracy[67].Itemswithhigherrelateddecisioneffortsareoftendenotedashigh-
involvementitemswhereasitemswithlessrelateddecisioneffortsaredenotedas
low-involvementitems[70].Suboptimaldecisionshaveamuchhighernegative
impactinthecontextofhigh-involvementitems.Forexample,whenpurchasingan
apartment,asuboptimaldecisionmanifestsinsearcheffortsforanewapartment,
unnecessarypayments,relocationcosts,andadditionaltimeefforts[27].Incontrast,
risksrelatedtothepurchasingofalow-qualitybookarenegligible—intheworst
case,theuserwillprovidenegativefeedbackonthebookandtryto?ndother
alternativesthatbetter?this/herwishesandneeds.Whenpurchasingabook,the
numberofdecisiondimensionsislow—examplesofdimensionsarepriceand
quality.Thenumberofdecisiondimensionsofapartmentsismuchhigher(e.g.,
price,qualityofpublictransport,neighborhood,schoolsintheneighborhood,etc.).
Aspectsthatfurtherincreasedecisioncomplexityespeciallyingroupdecision
scenariosare,forexample,contradictingpreferencesofgroupmembers,personal
relationships,personalityfactors,andemotion-relatedaspects(seeChap.9).
StructurednessWeinterpretstructurednessofdecisiontasksasthedegreetowhich
underlyingprocessesanddecisionpoliciesarede?ned.Decisiontasksareoften
characterizedbyunde?nedprocessesandrelateddecisionpoliciesarenotpre-
de?nedbutdevelopedandadaptedinthecourseofthedecisionprocess.Ifagroup
ofusershastodecideonaholidaydestinationforthenextsummer,arecommender
systemcanproposealternativedestinationsbutitisunclearwhichofthealternatives
willbechosenbythegroup.The?naldecisionissomethingthathastobemade
bygroupmembers(oranindividualuser)andisinmanycasesnothandledby
theunderlyingdecisionsupportenvironment.Thereareexceptionstotherule,for
example,musicrecommendationsin?tnesscentersandinformationunitsshownon
publicdisplays.Speci?cdecisiontypesfollowaformalizedprocess.Forexample,
electoralsystemsarede?nedbypreciserulesthatdeterminehowelectionsand
referendumshavetobeconducted(theprocess)andhowtheresultsaredetermined
(decisionmaking).
DecisionTypeDecisiontasksareoftende?nedonthebasisofknownalternatives
orparametersoutofwhichoneormorealternatives(values)shouldbeselected.
Ifalternatives(parameters)areprede?ned,theunderlyingdecisiontaskcanbe
regardedasabasicchoicetask[42].Choiceproblemsareconsideredascentral
applicationareaforrecommendersystems[42].Theotherextremeareso-called
designtasks,wherealternativesarenotprede?nedbutcreatedthroughoutadecision
process.Designtasksareoftenrelatedtocreativeactswherepersonsdevelop
ideasandsolutions.In“pure”designscenarios,theapplicationofrecommendation
technologiesisnotwidespread[75].However,therearemanyscenarioslocated
in-betweenbasicchoicetasksand“pure”designtasks.Forexample,knowledge-
basedcon?guration[25]canbeconsideredasasimplertypeofdesigntaskwhere
asolutionisidenti?ed(con?gured)outofasetofpre-de?nedcomponenttypes.In
thiscontext,thealternatives(parametervalues)areknownbeforehand;duetothe
largeoptionspace,notallpotentialalternativescanbeenumeratedforperformance
reasons—billionsofalternativeswouldhavetobemanagedandthecorresponding
recommendationalgorithmswouldbecomeinef?cient[13](seeChap.7).
SentimentDecisionsupportwithincludedrecommendationsupportisveryoften
opportunity-related,i.e.,thegoalisrelatedtoanopportunityandthebestsolutionto
achieveagoalshouldbeidenti?ed.Examplesthereofarepurchasingabooktobetter
understandacertaintopicorchoosingaholidaydestinationtospendunforgettable
dayssomewhereabroad.Asimilarargumentholdsforitemdomainssuchassongs,
digitalequipment,food,and?nancialservices.Certainly,decisionproblemsalso
existincontextswherealternativeoutcomescanbeconsideredasnegativeones.
Forexample,choosingbetweenalternativeoptionstoliquidateacompany—inthis
scenario,everyoutcomecanbeconsideredasanegativeone(thecompanygets
liquidated).However,recommendersystemscanhelptominimizedamage,for
example,onthebasisofastructuredutilityanalysis[79].
DependenceWeregarddecisiontasksasdependentiftheoutcomeofadecision
hasanimpactonanotherdecision.Forexample,thepurchaseofamovietypically
doesnotrequireafollow-updecisionregardingthepurchaseofthenextmovie
ordifferentitem.Dependentdecisiontasksoccurwhenonedecisionatanearlier
pointoftimeleadstofollow-updecisiontasksatalaterpointoftime.Anexample
ofsuchadecisiontaskisrequirementsreleaseplanningwhereforeachsoftware
requirementithastobedecidedwhentherequirementshouldbeimplemented[64].
Consequently,decisionstakeninearlyphasesofasoftwareprojectcanhavean
impactonortriggerdecisionslaterintheproject.Forexample,adecisionthata
requirementshouldbeimplementedcouldtriggerdecisionsregardingadditional
resourcesinordertobeabletoprovidethepromisedsoftwarefunctionalitiesin
time.
LevelWecandifferentiatebetweenoriginaldecisionsoperatingontheobject
levelanddecisionsonthemeta-level[33].The?rsttypeisomni-presentinmany
recommendation-supportedscenarios—theunderlyingtaskistoidentifyandchoose
itemsofrelevance.Incontrast,meta-decisionsaredecisionsaboutthequalitiesof
adecisionprocessandthewaydecisionsaretaken.Forexample,agroupcould
decidetousemajorityvotingwhenitcomestotheelectionofthenextchairman.
Ameta-decisioninthiscontextistodecideabouttheelectionformalism—related
alternativescanbe,forexample,relativemajorityandasingle-shotelectionor
absolutemajorityinapotentiallymulti-levelelectionprocess[51].Inmanydecision
scenarios—especiallyinthecontextofgroupdecisionmaking—recommendations
haveanadvisoryfunctionbutarenotconsideredimperative.
ActorManyrecommendationapproachessupportindividualdecisionmaking
whererecommendationalgorithmsarefocusingondeterminingrecommendations
forindividualusers.Thefocusofthisbookarerecommendersystemsthatsupport
decisionmakingforgroupsofusers.Thefollowingtypesofgroupsareintroduced
in[7]:(1)establishedgroupswithsharedandlong-termcommoninterests(e.g.,
conferencecommitteestakingdecisionsaboutconferencevenuesorfamiliestaking
adecisionaboutpurchasingahouse),(2)occasionalgroupswithacommonaim
inaparticularmoment(e.g.,agroupofpersonsjointlyparticipatinginamuseum
tour),(3)randomgroups(e.g.,personsina?tnesscenterorpersonsaroundapublic
display),and(4)automaticallyidenti?edgroupswhereindividualswithsimilar
preferenceshavetobegrouped(e.g.,distributionofseminarpaperstostudentsand
distributionofconferencepaperstoreviewers).
1.3RecommendationAlgorithmsforIndividualUsers
Recommendersystems[43,58]proposeitemsofpotentialinteresttoanindividual
useroragroupofusers.2Theyareappliedinitemdomainssuchasbooks[52],
websites[68],?nancialservices[16],andsoftwareartifacts[20,24].Inthe
following,weintroducecollaborative?ltering[31,48],content-based?ltering[68],
constraint-based[8,14],critiquing-based[10,11],andhybridrecommendation
[9]whicharebasicrecommendationapproaches.TheitemsinTable1.2(travel
destinations)serveasexamplestodemonstratehowbasicrecommendationalgo-
rithmsoperate.InChap.2,weshowhowtheseapproachescanbeintegratedinto
correspondinggrouprecommendationscenarios.
CollaborativeFiltering
Collaborative?lteringisbasedontheideaofword-of-mouthpromotionwhereopin-
ionsofrelativesandfriendsplayamajorrolewhentakingadecision[12,48,52].In
onlinescenarios,familymembersandfriendsarereplacedbynearestneighborswho
2Partsofthissectionarebasedonadiscussionofrecommendationtechnologiesgivenin[24].
Table1.2Examplesetoftraveldestinations
Traveldestination(item)NameBeachCitytoursNatureEntertainment
t1Viennaxx
t2Yellowstonex
t3NewYorkxxx
t4BlueMountainsx
t5Londonxx
t6Beijingxx
t7CapeTownxxxx
t8Yosemityx
t9Parisxx
t10Pittsburghxx
Theseitemswillbeusedacrossthefollowingsectionsfordemonstrationpurposes.Eachtravel
destinationisdescribedbyasetofmeta-characteristics(categories),forexample,traveldestination
Yellowstoneisfamousforitsexperienceofnature
areuserswithpreferencessimilartotheonesofthecurrentuser.Incollaborative?ltering,auseritemratingspeci?estowhichextentauserlikesanitem.Rating
predictionsaredeterminedbyarecommenderalgorithmtoestimatetheextentauserwilllikeanitemhe/shedidnotconsume/evaluateuptonow.Acollaborative?lteringrecommender?rstdeterminesknearestneighbors(kNN).
3Thepreferencesofnearestneighborsareusedtoextrapolatefutureitemratingsofthecurrentuser.Auseritemratingmatrixthatwillbeusedinthefollowingforexplaining
collaborative?lteringisshowninTable1.3.Inthisexample,allusersuivisitedtraveldestinationsandprovidedacorrespondingrating.Incollaborative?ltering,useritemratingsserveasinputfortherecommender.
Collaborative?lteringidenti?esthek-nearestneighborsofthecurrentuserua(seeFormula1.1)4and—basedonthenearestneighbors—calculatesaprediction
forthecurrentuser’srating.WhenapplyingFormula1.1,useru2isidenti?edas
thenearestneighborofuserua(seealsoTable1.3).Thesimilaritybetweenua
andanotheruseruxcanbedetermined,forexample,usingthePearsoncorrelation
coef?cient[43](seeFormula1.1)whereTDcisthesetofitemsthathavebeenratedbybothusers(uaandux),rx;tiistheratingofuserxforitemti,andrxistheaverage
ratingofuserx.SimilarityvaluesresultingfromFormula1.1cantakevaluesonascaleof[1::C1].Sometimes,“neighbor”userswithlowornegativecorrelationswiththecurrentuserare?lteredout[1].
3Wefocusonuser-basedcollaborative?lteringwhichisamemory-basedapproachthat—incontrasttomodel-basedones—operatesonanuncompressedversionofauser/itemmatrix[6,12].
4Weassumek=2inourexample.
Table1.3Exampleofcollaborative?lteringratingmatrix:traveldestinations(items)tiandratings
(weassumearatingscaleof1..5)
ItemNameu1u2u3u4ua
t1Vienna5.04.0
t2Yellowstone4.0
t3NewYork3.04.03.0
t4BlueMountains5.05.04.0
t5London3.0
t6Beijing4.54.04.0
t7CapeTown4.0
t8Yosemity2.0
t9Paris3.0
t10Pittsburgh5.03.0
Averagerating(rx)4.333.6254.03.753.67
Table1.4Similarity
betweenuseruaandtheusers
uj¤u
adeterminedbasedon
Formula1.1
u1u2u3u4
ua–0.970.70–
Ifthenumberofcommonly
rateditemsisbelow2,no
similaritybetweenthetwo
usersiscalculated
similarity.ua;ux/DP
c.ra;tir
qPa/2qP
(1.1)
a/.rx;tir
x/
ti2TD
c.ra;tirc.rx;tir
x/2
ti2TDti2TD
ThesimilarityvaluesforuacalculatedbasedonFormula1.1areshowninTable1.4.Forthepurposeofourexample,weassumetheexistenceofatleasttwoitemsperuserpair(ui,uj)(i¤j)inordertobeabletodetermineasimilarity.This
criterionholdsforusersu2andu3.
Achallengewhendeterminingthesimilaritybetweenusersisthesparsityofthe
ratingmatrix.Userstypicallyprovideratingsforonlyaverysmallsubsetofthe
offereditems.Forexample,givenalargemoviedatasetthatcontainsthousandsof
entries,auserwilltypicallybeabletorateonlyafewdozen.Oneapproachtothis
problemistotakeintoaccountthenumberofcommonlyrateditemsasacorrelation
signi?cance[37],i.e.,thehigherthenumberofcommonlyrateditems,thehigheris
thesigni?canceofthecorrespondingcorrelation.Forfurtherinformationregarding
thehandlingofsparsity,wereferto[37,43].
Theinformationaboutthesetofuserswitharatingbehaviorsimilartothatof
thecurrentuser(nearestneighborsNN)isthebasisforpredictingtheratingofuser
uaforanitemtthathassofarnotbeenratedbyua(seeFormula1.2).
prediction.ua;t/DrO.ua;t/Dr
aCP
P
similarity.ua;uj/.rj;tr
j/
uj2NN
similarity.ua;uj/
uj2NN
(1.2)
Table1.5Collaborative?lteringbasedrecommendations(predictions)foritemsthathavenot
beenratedbyuseruauptonow
t1t2t3t4t5t6t7t8t9t10u2––3.05.0–4.5–2.0––
u3––4.05.03.04.0––––
ua–––4.0–4.0––3.0
Predictionforua––3.30p–2.66––2.04––
Basedontheratingsofthenearestneighborsofua,weareabletodeterminea
predictionforua(seeTable1.5).Thenearestneighborsofuaareassumedtobeu2
andu3(seeTable1.4).Thetraveldestinationsratedbythenearestneighborsbut
notratedbyuaaret3,t5,andt8.Duetothedeterminedpredictions(Formula1.2),
itemt3wouldberankedhigherthantheitemst5andt8inarecommendationlist.
Foradiscussionofadvancedcollaborativerecommendationapproaches,werefer
thereaderto[49,74].
Content-BasedFiltering
Thisapproachisbasedontheassumptionofmonotonicpersonalinterests[68].For
example,usersinterestedinpoliticalnewsaretypicallynotchangingtheirinterest
pro?lefromonedaytoanother.Onthecontrary,theywillalsobeinterestedin
thetopicinthe(near)future.Inonlinescenarios,content-basedrecommendersare
applied,forexample,whenitcomestotherecommendationofwebsites[68].
Content-based?lteringisbasedon(a)asetofusersand(b)asetofcategories
(orkeywords)thathavebeenassignedto(orextractedfrom)thesetofitems.It
comparesthecontentofalreadyconsumeditemswithnewitems,i.e.,it?ndsitemsthataresimilartothosealreadyconsumed(positivelyrated)bytheuser(ua).The
basisfordeterminingsuchasimilarityarekeywordsextractedfromtheitemcontent
descriptions(e.g.,keywordsextractedfromnewsarticles)orcategoriesifitems
havebeenannotatedwiththerelevantmeta-information.Readersinterestedinthe
principlesofkeywordextractionarereferredto[43].Inthisbook,wefocuson
content-basedrecommendationwhichexploitsitemcategories(seeTable1.2).
Content-based?lteringwillnowbeexplainedusingTables1.2,1.6,and1.7.
Table1.2providesanoverviewoftherelevantitemsandtheassignmentsofitems
tocategories.Table1.6providesinformation
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務(wù)分包招標(biāo)文件格式標(biāo)準(zhǔn)3篇
- 公租房授權(quán)辦理委托協(xié)議書(shū)3篇
- 商業(yè)合作信用記錄承諾書(shū)3篇
- 家居信息化發(fā)展承諾3篇
- 攝影采風(fēng)活動(dòng)的實(shí)施方案怎么寫(xiě)(18篇)
- 2025大班幼小銜接工作計(jì)劃(14篇)
- 小學(xué)軍訓(xùn)心得體會(huì)600字(16篇)
- 2024年曲靖市富源縣公安局情指中心招聘警務(wù)輔助人員考試真題
- 誠(chéng)信演講稿范文1500字(15篇)
- 2024年紅河州交通運(yùn)輸綜合行政執(zhí)法支隊(duì)縣市大隊(duì)招聘考試真題
- 隧道高空作業(yè)施工方案
- 危險(xiǎn)性較大的分部分項(xiàng)工程專項(xiàng)施工方案嚴(yán)重缺陷清單(試行)
- 深信服超融合HCI技術(shù)白皮書(shū)-20230213
- 2025年陜西省土地工程建設(shè)集團(tuán)有限責(zé)任公司招聘筆試參考題庫(kù)附帶答案詳解
- 2024廣西公務(wù)員【申論A卷、C卷+2023申論A卷】共3套真題及答案
- 《多樣的中國(guó)民間美術(shù)》課件 2024-2025學(xué)年人美版(2024)初中美術(shù)七年級(jí)下冊(cè)
- 人教版 七年級(jí) 下冊(cè) 語(yǔ)文 第四單元《青春之光》課件
- 2024物業(yè)管理數(shù)字化升級(jí)服務(wù)合同
- 灌漿作業(yè)安全操作規(guī)程(3篇)
- 藥品追回管理制度內(nèi)容
- 二戰(zhàn)時(shí)期的中國(guó)抗日戰(zhàn)爭(zhēng)
評(píng)論
0/150
提交評(píng)論