青島黃海學(xué)院《視覺傳達(dá)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
青島黃海學(xué)院《視覺傳達(dá)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
青島黃海學(xué)院《視覺傳達(dá)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
青島黃海學(xué)院《視覺傳達(dá)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
青島黃海學(xué)院《視覺傳達(dá)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁青島黃海學(xué)院《視覺傳達(dá)設(shè)計(jì)》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、目標(biāo)檢測是計(jì)算機(jī)視覺中的重要任務(wù)之一。假設(shè)要在一張城市街道的圖像中檢測出所有的行人和車輛,以下關(guān)于目標(biāo)檢測算法的描述,正確的是:()A.基于傳統(tǒng)的圖像處理方法的目標(biāo)檢測算法在復(fù)雜場景中表現(xiàn)優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)中的單階段目標(biāo)檢測算法比兩階段算法速度快,但精度較低C.目標(biāo)檢測算法只需要關(guān)注目標(biāo)的位置,不需要考慮目標(biāo)的類別D.目標(biāo)檢測的準(zhǔn)確率不受圖像質(zhì)量、光照條件和目標(biāo)大小變化的影響2、計(jì)算機(jī)視覺在衛(wèi)星遙感圖像分析中的應(yīng)用可以幫助監(jiān)測地球環(huán)境和資源。假設(shè)要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關(guān)于計(jì)算機(jī)視覺在衛(wèi)星遙感中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過圖像分類和分割技術(shù)區(qū)分森林、草地和建筑物等不同地物類型B.能夠?qū)Χ鄷r(shí)相的衛(wèi)星圖像進(jìn)行比較,監(jiān)測森林的生長和砍伐情況C.計(jì)算機(jī)視覺在衛(wèi)星遙感中的應(yīng)用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結(jié)合地理信息系統(tǒng)(GIS)數(shù)據(jù),進(jìn)行更深入的空間分析和決策支持3、計(jì)算機(jī)視覺中的語義分割任務(wù)旨在為圖像中的每個(gè)像素分配一個(gè)類別標(biāo)簽。假設(shè)要對醫(yī)學(xué)圖像中的病變區(qū)域進(jìn)行精確分割,以下哪種技術(shù)可能對提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)B.引入多尺度特征融合C.增加訓(xùn)練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡(luò)中的參數(shù)數(shù)量4、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要對細(xì)胞圖像進(jìn)行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項(xiàng)是不準(zhǔn)確的?()A.模型對細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時(shí)間和計(jì)算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)5、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域精確地分割出來,以便醫(yī)生進(jìn)行診斷和治療。這張醫(yī)學(xué)圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時(shí)可能更具優(yōu)勢?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進(jìn)行分割B.基于區(qū)域生長的分割方法,從種子點(diǎn)開始逐漸擴(kuò)展區(qū)域C.基于深度學(xué)習(xí)的語義分割算法,如U-NetD.隨機(jī)分割圖像,然后根據(jù)后續(xù)分析進(jìn)行調(diào)整6、在計(jì)算機(jī)視覺的動(dòng)作識(shí)別任務(wù)中,區(qū)分不同的人體動(dòng)作。假設(shè)要從一段視頻中識(shí)別出一個(gè)人是在跑步還是走路,以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于骨架信息的動(dòng)作識(shí)別方法對人體姿態(tài)的微小變化不敏感B.只考慮動(dòng)作的空間特征就能準(zhǔn)確識(shí)別不同的動(dòng)作C.融合時(shí)空特征和深度學(xué)習(xí)模型能夠提升動(dòng)作識(shí)別的準(zhǔn)確率D.動(dòng)作識(shí)別的結(jié)果不受視頻拍攝角度和背景干擾的影響7、在計(jì)算機(jī)視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時(shí)包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進(jìn)行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計(jì)算量大C.空洞卷積在處理多尺度特征時(shí)會(huì)引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像8、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,例如對腫瘤的檢測和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)9、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果10、在計(jì)算機(jī)視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測是重要功能之一。假設(shè)要在一個(gè)倉庫的監(jiān)控視頻中檢測出異常的人員活動(dòng)或物品移動(dòng)。以下哪種異常事件檢測方法在處理這種大規(guī)模視頻數(shù)據(jù)時(shí)能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測B.基于統(tǒng)計(jì)模型的檢測C.基于深度學(xué)習(xí)的檢測D.基于人工觀察的檢測11、在計(jì)算機(jī)視覺的姿態(tài)估計(jì)任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)我們要估計(jì)一個(gè)機(jī)器人手臂的姿態(tài),以下哪種技術(shù)通常被用于獲取準(zhǔn)確的姿態(tài)信息?()A.基于視覺標(biāo)記的姿態(tài)估計(jì)B.基于深度學(xué)習(xí)的姿態(tài)估計(jì)C.基于幾何約束的姿態(tài)估計(jì)D.基于慣性測量單元(IMU)的姿態(tài)估計(jì)12、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,輔助醫(yī)生進(jìn)行疾病診斷。假設(shè)要通過分析CT圖像檢測腫瘤的位置和大小,以下關(guān)于醫(yī)學(xué)圖像計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.計(jì)算機(jī)視覺算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步判斷B.不同患者的個(gè)體差異和掃描參數(shù)的變化對腫瘤檢測結(jié)果沒有影響C.結(jié)合醫(yī)生的先驗(yàn)知識(shí)和計(jì)算機(jī)視覺技術(shù)能夠提高腫瘤檢測的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像中的噪聲和偽影對計(jì)算機(jī)視覺算法的性能沒有影響13、在計(jì)算機(jī)視覺的圖像超分辨率重建中,提高低分辨率圖像的清晰度。假設(shè)要將一張模糊的圖像重建為清晰的高分辨率圖像,以下關(guān)于圖像超分辨率重建方法的描述,哪一項(xiàng)是不正確的?()A.基于插值的方法通過在像素之間插入新的值來增加圖像的分辨率,但可能會(huì)導(dǎo)致圖像模糊B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)低分辨率圖像和高分辨率圖像之間的映射關(guān)系,重建出更清晰的圖像C.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制D.為了獲得更好的重建效果,可以結(jié)合多種超分辨率重建方法或使用先驗(yàn)知識(shí)14、當(dāng)進(jìn)行圖像的顯著性檢測時(shí),假設(shè)要從一張復(fù)雜的圖像中突出顯示出人們視覺上最關(guān)注的區(qū)域,例如在一張風(fēng)景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計(jì)算圖像的顯著性時(shí)可能更準(zhǔn)確?()A.基于頻率域分析的方法,計(jì)算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機(jī)選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進(jìn)行任何計(jì)算,主觀判斷顯著性區(qū)域15、計(jì)算機(jī)視覺中,以下哪個(gè)任務(wù)通常需要對圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測C.圖像超分辨率D.圖像去噪16、在計(jì)算機(jī)視覺的實(shí)際應(yīng)用中,模型的實(shí)時(shí)性是一個(gè)重要的考慮因素。以下關(guān)于實(shí)時(shí)性的描述,不正確的是()A.對于一些需要實(shí)時(shí)響應(yīng)的應(yīng)用,如自動(dòng)駕駛和工業(yè)檢測,模型的處理速度至關(guān)重要B.模型的復(fù)雜度、計(jì)算資源和算法效率都會(huì)影響實(shí)時(shí)性C.可以通過模型壓縮、硬件加速和優(yōu)化算法等方法來提高模型的實(shí)時(shí)性D.實(shí)時(shí)性只與模型本身有關(guān),與硬件設(shè)備和系統(tǒng)架構(gòu)無關(guān)17、在計(jì)算機(jī)視覺的圖像壓縮任務(wù)中,需要在減少數(shù)據(jù)量的同時(shí)盡量保持圖像的質(zhì)量。假設(shè)要對一組高清圖像進(jìn)行壓縮,以節(jié)省存儲(chǔ)空間和傳輸帶寬,同時(shí)要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法18、計(jì)算機(jī)視覺中的車牌識(shí)別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個(gè)高速公路收費(fèi)站實(shí)現(xiàn)準(zhǔn)確的車牌識(shí)別,以下關(guān)于車牌識(shí)別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車牌圖像中識(shí)別出字符,但對車牌的傾斜和光照不均敏感C.車牌識(shí)別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運(yùn)行D.車牌識(shí)別的準(zhǔn)確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關(guān)19、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行視頻監(jiān)控中的異常行為檢測,例如打架、盜竊等,以下哪種方法可能有助于準(zhǔn)確識(shí)別異常行為?()A.建立正常行為模型B.運(yùn)動(dòng)軌跡分析C.人群密度估計(jì)D.以上都是20、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有著至關(guān)重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志和障礙物。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺任務(wù)的描述,正確的是:()A.只需對前方物體進(jìn)行簡單的圖像分類,就能實(shí)現(xiàn)安全的自動(dòng)駕駛B.準(zhǔn)確的目標(biāo)檢測和語義分割對于理解復(fù)雜的道路場景至關(guān)重要C.計(jì)算機(jī)視覺在自動(dòng)駕駛中作用不大,主要依靠其他傳感器如雷達(dá)D.對于交通標(biāo)志的識(shí)別,顏色信息比形狀和圖案信息更重要二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)說明計(jì)算機(jī)視覺在電力設(shè)備巡檢中的應(yīng)用。2、(本題5分)解釋計(jì)算機(jī)視覺在刑偵中的應(yīng)用。3、(本題5分)說明計(jì)算機(jī)視覺在照明行業(yè)中的應(yīng)用。4、(本題5分)解釋計(jì)算機(jī)視覺中的目標(biāo)檢測與圖像分類的區(qū)別。5、(本題5分)解釋計(jì)算機(jī)視覺中的圖像檢索技術(shù)。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某品牌的社交媒體頁面設(shè)計(jì)獨(dú)特,吸引了大量粉絲關(guān)注。請分析社交媒體頁面在封面圖片、內(nèi)容排版、互動(dòng)元素設(shè)置上的策略,以及如何增強(qiáng)品牌與用戶的互動(dòng)和粘性。2、(本題5分)某運(yùn)動(dòng)飲料的廣告設(shè)計(jì)強(qiáng)調(diào)能量和活力,運(yùn)用動(dòng)態(tài)的圖形和鮮明的色彩。請分析此設(shè)計(jì)在傳達(dá)產(chǎn)品特點(diǎn)、吸引消費(fèi)者、提升市場份額方面的手法和成效,以及如何與競爭對手區(qū)分開來。3、(本題5分)研究某化妝品品牌的線下體驗(yàn)店設(shè)計(jì),分析其視覺效果、產(chǎn)品展示和服務(wù)體驗(yàn),討論如何吸引顧客的光顧和提高品牌的忠誠度。4、(本題5分)某化妝品品牌推出了一系列新品,其產(chǎn)品包裝和廣告設(shè)計(jì)以女性美為主題。請分析這些設(shè)計(jì)在迎合目標(biāo)客戶群體、展現(xiàn)產(chǎn)品功效、提升品牌形象方面的策略和效果,以及如何在競爭激烈的市場中突出自身特色

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論