




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
陜西省銅川市王益區(qū)2025年下學(xué)期高三模擬卷(一)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)四面體所有棱長都是4,四個(gè)頂點(diǎn)在同一個(gè)球上,則球的表面積為()A. B. C. D.2.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.13.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個(gè)半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.4.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.5.已知復(fù)數(shù),則()A. B. C. D.26.下圖是我國第24~30屆奧運(yùn)獎(jiǎng)牌數(shù)的回眸和中國代表團(tuán)獎(jiǎng)牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎(jiǎng)牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)的中位數(shù)是54.57.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.8.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.9.計(jì)算等于()A. B. C. D.10.若函數(shù)在時(shí)取得最小值,則()A. B. C. D.11.設(shè)集合,,則()A. B.C. D.12.如圖,正三棱柱各條棱的長度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.14.已知數(shù)列的前項(xiàng)滿足,則______.15.已知實(shí)數(shù)滿足則點(diǎn)構(gòu)成的區(qū)域的面積為____,的最大值為_________16.已知變量(m>0),且,若恒成立,則m的最大值________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個(gè)整數(shù),求實(shí)數(shù)k的取值范圍.18.(12分)若函數(shù)為奇函數(shù),且時(shí)有極小值.(1)求實(shí)數(shù)的值與實(shí)數(shù)的取值范圍;(2)若恒成立,求實(shí)數(shù)的取值范圍.19.(12分)某職稱晉級評定機(jī)構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失?。畷x級成功晉級失敗合計(jì)男16女50合計(jì)(1)求圖中的值;(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為“晉級成功”與性別有關(guān)?(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02420.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.21.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由.22.(10分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標(biāo)原點(diǎn)作直線交曲線于點(diǎn)(異于),交曲線于點(diǎn),求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
將正四面體補(bǔ)成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個(gè)正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.2.A【解析】
根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.3.A【解析】由題意得到該幾何體是一個(gè)組合體,前半部分是一個(gè)高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個(gè)底面半徑為2的半個(gè)圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.4.B【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導(dǎo)數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價(jià)為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.本題主要考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學(xué)生分析問題解決問題的能力,是難題.5.C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.6.B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)不是一直保持上升趨勢,29屆最多,錯(cuò)誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯(cuò)誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡單題目.7.B【解析】
求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對這些知識(shí)的理解掌握水平.8.D【解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).9.A【解析】
利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運(yùn)算,求得所求表達(dá)式的值.【詳解】原式.故選:A本小題主要考查誘導(dǎo)公式,考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.10.D【解析】
利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時(shí)的值.【詳解】解:,其中,,,故當(dāng),即時(shí),函數(shù)取最小值,所以,故選:D本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.11.A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因?yàn)?,又,所?故選:A.本題考查交集的計(jì)算,同時(shí)也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.12.D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯(cuò)誤.故選D本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,14.【解析】
由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時(shí)要注意的求解方法.【詳解】∵①,∴時(shí),②,①-②得,∴,又,∴().故答案為:.本題考查求數(shù)列通項(xiàng)公式,由已知條件.類比已知求的解題方法求解.15.811【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標(biāo)函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域?yàn)槿切?,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時(shí),z最大,故.故答案為:;11.本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎(chǔ)題.16.【解析】
在不等式兩邊同時(shí)取對數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】不等式兩邊同時(shí)取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由不等式可得,討論與的關(guān)系,即可得到結(jié)果;(2)先解得不等式,由集合M中有且僅有一個(gè)整數(shù),當(dāng)時(shí),則M中僅有的整數(shù)為;當(dāng)時(shí),則M中僅有的整數(shù)為,進(jìn)而求解即可.【詳解】解:(1)因?yàn)?所以,當(dāng),即時(shí),;當(dāng),即時(shí),;當(dāng),即時(shí),.(2)由得,當(dāng),即時(shí),M中僅有的整數(shù)為,所以,即;當(dāng),即時(shí),M中僅有的整數(shù)為,所以,即;綜上,滿足題意的k的范圍為本題考查解一元二次不等式,考查由交集的結(jié)果求參數(shù)范圍,考查分類討論思想與運(yùn)算能力.18.(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實(shí)數(shù)的值;對函數(shù)進(jìn)行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時(shí)時(shí)有極小值.(2)可知,進(jìn)而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實(shí)數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當(dāng)時(shí),;當(dāng)時(shí),,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點(diǎn);所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點(diǎn)存在性定理知在區(qū)間上,存在為函數(shù)的零點(diǎn),為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時(shí),,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時(shí),則在上遞增,故.綜上,的取值范圍是.本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.19.(1);(2)列聯(lián)表見解析,有超過的把握認(rèn)為“晉級成功”與性別有關(guān);(3)分布列見解析,=3【解析】
(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計(jì)算晉級成功的人數(shù),填寫列聯(lián)表,計(jì)算觀測值,對照臨界值得出結(jié)論;(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,知隨機(jī)變量服從二項(xiàng)分布,計(jì)算對應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級成功的頻率為,所以晉級成功的人數(shù)為(人),填表如下:晉級成功晉級失敗合計(jì)男163450女94150合計(jì)2575100假設(shè)“晉級成功”與性別無關(guān),根據(jù)上表數(shù)據(jù)代入公式可得,所以有超過的把握認(rèn)為“晉級成功”與性別有關(guān);(3)由頻率分布直方圖知晉級失敗的頻率為,將頻率視為概率,則從本次考試的所有人員中,隨機(jī)抽取1人進(jìn)行約談,這人晉級失敗的概率為0.75,所以可視為服從二項(xiàng)分布,即,,故,,,,.所以的分布列為:01234數(shù)學(xué)期望為.或().本題考查了頻率分布直方圖和離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的應(yīng)用問題,屬于中檔題.若離散型隨機(jī)變量,則.20.(1);(2)【解析】
(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達(dá)式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.本題綜合考查了正余弦定理,倍角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年03月浙江金華市金東區(qū)部分事業(yè)單位公開招聘工作人員17人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年03月廣西貴港市引進(jìn)民辦普通高校高層次人才45人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年03月嘉興海鹽縣事業(yè)單位公開招聘96人-統(tǒng)考筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年03月安徽農(nóng)業(yè)大學(xué)專職輔導(dǎo)員和管理崗位公開招聘16人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年03月臺(tái)州市科技館公開招聘3人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 中級網(wǎng)絡(luò)工程師-2019年下半年(下午)《網(wǎng)絡(luò)工程師》案例分析真題
- 新疆阿克蘇地區(qū)沙雅縣2025年初三下學(xué)期第六次檢測試題英語試題試卷含答案
- 大連軟件職業(yè)學(xué)院《中國文學(xué)批評史研究型》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海出版印刷高等專科學(xué)?!秱鬟f現(xiàn)象》2023-2024學(xué)年第一學(xué)期期末試卷
- 昆明鐵道職業(yè)技術(shù)學(xué)院《有機(jī)食品》2023-2024學(xué)年第一學(xué)期期末試卷
- 產(chǎn)品特殊價(jià)格申請表
- 2023年河南鄭州大學(xué)第二附屬醫(yī)院經(jīng)開院區(qū)招聘藥學(xué)工作人員筆試備考題庫及答案解析
- 社會(huì)保障基金管理智慧樹知到答案章節(jié)測試2023年首都經(jīng)濟(jì)貿(mào)易大學(xué)
- 一年級語文雨點(diǎn)兒-教學(xué)課件【希沃白板初階培訓(xùn)結(jié)營大作業(yè)】
- 衛(wèi)生部手術(shù)分級目錄(2023年1月份修訂)
- GA/T 1323-2016基于熒光聚合物傳感技術(shù)的痕量炸藥探測儀通用技術(shù)要求
- 鋼棧橋施工監(jiān)理細(xì)則
- 優(yōu)秀員工榮譽(yù)證書模板
- 金蝶PLM詳細(xì)介紹
- 湖南文藝出版社小學(xué)六年級下冊音樂全冊教案
- 高中語文《祝?!贰罢l是兇手”系列之祥林嫂死亡事件《祝?!诽骄渴綄W(xué)習(xí)(教學(xué)課件) 課件
評論
0/150
提交評論