新疆新師大附中2024-2025學(xué)年高三下學(xué)期二輪復(fù)習(xí)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第1頁
新疆新師大附中2024-2025學(xué)年高三下學(xué)期二輪復(fù)習(xí)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第2頁
新疆新師大附中2024-2025學(xué)年高三下學(xué)期二輪復(fù)習(xí)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第3頁
新疆新師大附中2024-2025學(xué)年高三下學(xué)期二輪復(fù)習(xí)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第4頁
新疆新師大附中2024-2025學(xué)年高三下學(xué)期二輪復(fù)習(xí)質(zhì)量檢測試題數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新疆新師大附中2024-2025學(xué)年高三下學(xué)期二輪復(fù)習(xí)質(zhì)量檢測試題數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.2.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內(nèi)切圓的半徑為()A. B. C. D.3.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.4.已知集合,集合,那么等于()A. B. C. D.5.在中,,則=()A. B.C. D.6.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.7.兩圓和相外切,且,則的最大值為()A. B.9 C. D.18.已知三棱柱的所有棱長均相等,側(cè)棱平面,過作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關(guān)系為()A. B.C. D.9.設(shè)且,則下列不等式成立的是()A. B. C. D.10.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.11.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb12.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若關(guān)于的不等式在上恒成立,則的最大值為__________.14.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_____.15.若,則__________.16.如圖,直線平面,垂足為,三棱錐的底面邊長和側(cè)棱長都為4,在平面內(nèi),是直線上的動點,則點到平面的距離為_______,點到直線的距離的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.18.(12分)已知數(shù)列中,,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.19.(12分)在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點,中點為,的垂直平分線交于、.以為坐標(biāo)原點,極軸為軸的正半軸建立直角坐標(biāo)系.(1)求的直角坐標(biāo)方程與點的直角坐標(biāo);(2)求證:.20.(12分)已知是公比為的無窮等比數(shù)列,其前項和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補充在上面問題中并作答.21.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)已知頂點是坐標(biāo)原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關(guān)于點對稱.(1)求和的標(biāo)準(zhǔn)方程;(2)過點的直線與交于,與交于,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.本題考查函數(shù)的零點問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.2.B【解析】

設(shè)左焦點的坐標(biāo),由AB的弦長可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.3.C【解析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.4.A【解析】

求出集合,然后進(jìn)行并集的運算即可.【詳解】∵,,∴.故選:A.本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.5.B【解析】

在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.本題考查了平面向量的線性運算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.6.D【解析】

根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.本題主要考查三視圖的識別,復(fù)雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).7.A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當(dāng)時,取最大值故選:A本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.8.B【解析】

利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設(shè)三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B本題主要考查了空間中兩直線所成角的計算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀想象的核心素養(yǎng).9.A【解析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.10.A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運算可以求出.詳解:由題設(shè)有,故,故選A.點睛:本題考查復(fù)數(shù)的四則運算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.11.B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負(fù)數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進(jìn)行比較;若底數(shù)不同,可考慮利用中間量進(jìn)行比較.12.B【解析】

運行程序,依次進(jìn)行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時,再次循環(huán)輸出的,,此時,循環(huán)結(jié)束,輸出,故選:B本題主要考查程序框圖的相關(guān)知識,經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

分類討論,時不合題意;時求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡得,構(gòu)造放縮函數(shù)對自變量再研究,可解,【詳解】令;當(dāng)時,,不合題意;當(dāng)時,,令,得或,所以在區(qū)間和上單調(diào)遞減.因為,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時,,當(dāng)時,則.設(shè),則.當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.14.【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:考查學(xué)生對幾何體的正確認(rèn)識,能通過題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題15.【解析】

因為,由二倍角公式得到,故得到.故答案為.16.【解析】

三棱錐的底面邊長和側(cè)棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點到平面的距離;,可得點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑,即可求出結(jié)論.【詳解】邊長為,則中線長為,點到平面的距離為,點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑.又三棱錐的底面邊長和側(cè)棱長都為4,以下求過和的兩個平行平面間距離,分別取中點,連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.本題考查空間中的距離、正四面體的結(jié)構(gòu)特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因為,所以,解得.在中,由余弦定理得,,即,,故.本題考查正余弦定理在解三角形中的應(yīng)用,考查學(xué)生的計算能力,是一道中檔題.18.(1)(2)存在,【解析】

由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項公式即可求出,進(jìn)而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時,,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時,且為整數(shù)即可求出符合題意的的所有值.【詳解】因為數(shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項,以為公比的等比數(shù)列,所以,因為,所以.(2)由題意得,故,兩式相減得所以,當(dāng)時,又因為所以當(dāng)時,所以成立,所以當(dāng)時,數(shù)列是常數(shù)列,所以因為當(dāng)時,成立,所以,所以在中令,因為,所以可得,所以,由時,且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.本題考查數(shù)列的新定義、等比數(shù)列的通項公式和數(shù)列遞推公式的運用;考查運算求解能力、邏輯推理能力和對新定義的理解能力;通過反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強、難度大型試題.19.(1),;(2)見解析.【解析】

(1)將曲線的極坐標(biāo)方程變形為,再由可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標(biāo),即可得出線段的中點的坐標(biāo);(2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達(dá)定理求得的值,進(jìn)而可得出結(jié)論.【詳解】(1)曲線的極坐標(biāo)方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標(biāo)方程為.將直線的極坐標(biāo)方程化為普通方程得,聯(lián)立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.本題考查曲線的極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線參數(shù)幾何意義的應(yīng)用,涉及韋達(dá)定理的應(yīng)用,考查計算能力,屬于中等題.20.見解析【解析】

選擇①或②或③,求出的值,然后利用等比數(shù)列的求和公式可得出關(guān)于的不等式,判斷不等式是否存在符合條件的正整數(shù)解,在有解的情況下,解出不等式,進(jìn)而可得出結(jié)論.【詳解】選擇①:因為,所以,所以.令,即,,所以使得的正整數(shù)的最小值為;選擇②:因為,所以,.因為,所以不存在滿足條件的正整數(shù);選擇③:因為,所以,所以.令,即,整理得.當(dāng)為偶數(shù)時,原不等式無解;當(dāng)為奇數(shù)時,原不等式等價于,所以使得的正整數(shù)的最小值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論