2025屆河北省邯鄲市魏縣第五中學4月高三聯(lián)考數(shù)學試題試卷_第1頁
2025屆河北省邯鄲市魏縣第五中學4月高三聯(lián)考數(shù)學試題試卷_第2頁
2025屆河北省邯鄲市魏縣第五中學4月高三聯(lián)考數(shù)學試題試卷_第3頁
2025屆河北省邯鄲市魏縣第五中學4月高三聯(lián)考數(shù)學試題試卷_第4頁
2025屆河北省邯鄲市魏縣第五中學4月高三聯(lián)考數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆河北省邯鄲市魏縣第五中學4月高三聯(lián)考數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.2.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.13.設,滿足,則的取值范圍是()A. B. C. D.4.已知函數(shù)是上的偶函數(shù),且當時,函數(shù)是單調遞減函數(shù),則,,的大小關系是()A. B.C. D.5.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.6.已知全集,集合,則=()A. B.C. D.7.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.8.點在所在的平面內(nèi),,,,,且,則()A. B. C. D.9.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.10.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.311.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.12.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-1二、填空題:本題共4小題,每小題5分,共20分。13.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.14.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為___________.15.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.16.已知復數(shù)(為虛數(shù)單位)為純虛數(shù),則實數(shù)的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預算的測試經(jīng)費為10萬元,試問預算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.18.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數(shù)為,,,規(guī)定空集中元素的個數(shù)為.當時,求的值;利用數(shù)學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.20.(12分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.21.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.22.(10分)已知橢圓:(),點是的左頂點,點為上一點,離心率.(1)求橢圓的方程;(2)設過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經(jīng)過點,若存在,求出直線的方程;若不存在,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)圖象分析變化過程中在關鍵位置及部分區(qū)域,即可排除錯誤選項,得到函數(shù)圖象,即可求解.【詳解】由題意,當時,P與A重合,則與B重合,所以,故排除C,D選項;當時,,由圖象可知選B.故選:B【點睛】本題主要考查三角函數(shù)的圖像與性質,正確表示函數(shù)的表達式是解題的關鍵,屬于中檔題.2.B【解析】

根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.3.C【解析】

首先繪制出可行域,再繪制出目標函數(shù),根據(jù)可行域范圍求出目標函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數(shù)在點處取得最小值,故目標函數(shù)的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規(guī)劃中目標函數(shù)的取值范圍的問題,屬于基礎題.4.D【解析】

利用對數(shù)函數(shù)的單調性可得,再根據(jù)的單調性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數(shù)是單調遞減函數(shù),所以.因為為偶函數(shù),故,所以.故選:D.【點睛】本題考查抽象函數(shù)的奇偶性、單調性以及對數(shù)函數(shù)的單調性在大小比較中的應用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關系,本題屬于中檔題.5.D【解析】

根據(jù)雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.6.D【解析】

先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關系,屬于基礎題.7.B【解析】由題意可得c=,設右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當和大于兩定點間的距離時,軌跡是橢圓,當和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當和小于兩定點間的距離時,軌跡不存在.8.D【解析】

確定點為外心,代入化簡得到,,再根據(jù)計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯(lián)立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學生的計算能力.9.B【解析】

,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當時,的展開式中的系數(shù)為.當,時,系數(shù)為;當,時,系數(shù)為;當,時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.10.D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.11.C【解析】

根據(jù)線面垂直的性質以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設,,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當且僅當,時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關系及基本不等式的應用,考查空間想象能力以及數(shù)形結合思想,涉及線面垂直的判定和性質,屬中檔題.12.D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

將已知數(shù)列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.14.【解析】

求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質以及拋物線的簡單性質的應用,是基本知識的考查,屬于基礎題.15.【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.16.【解析】

利用復數(shù)的乘法求解再根據(jù)純虛數(shù)的定義求解即可.【詳解】解:復數(shù)為純虛數(shù),解得.故答案為:.【點睛】本題主要考查了根據(jù)復數(shù)為純虛數(shù)求解參數(shù)的問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)預算經(jīng)費不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分數(shù)的平均數(shù);(2)先求出每顆芯片的測試費用的數(shù)學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數(shù)為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數(shù)學期望為(元),因為,所以顯然預算經(jīng)費不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數(shù)的計算,考查離散型隨機變量的數(shù)學期望的計算,意在考查學生對這些知識的理解掌握水平.18.;證明見解析.【解析】

當時,集合共有個子集,即可求出結果;分類討論,利用數(shù)學歸納法證明.【詳解】當時,集合共有個子集,所以;①當時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設當時,存在有序集合組滿足題意,且,則當時,集合的子集個數(shù)為個,因為是4的整數(shù)倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【點睛】本題考查集合的自己個數(shù)的研究,結合數(shù)學歸納法的應用,屬于難題.19.(1)見解析;(2)見解析【解析】

(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.20.(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結果.詳解:(1)當時,,即故不等式的解集為.(2)當時成立等價于當時成立.若,則當時;若,的解集為,所以,故.綜上,的取值范圍為.點睛:該題考查的是有關絕對值不等式的解法,以及含參的絕對值的式子在某個區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會用零點分段法將其化為分段函數(shù),從而將不等式轉化為多個不等式組來解決,關于第二問求參數(shù)的取值范圍時,可以應用題中所給的自變量的范圍,去掉一個絕對值符號,之后進行分類討論,求得結果.21.(I)|FP|=2-32x【解析】

(I)直接利用兩點間距離公式化簡得到答案.(II)設Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點O到直線l的距離為d=m【點睛】本題考查了橢圓內(nèi)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論