




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省湛江一中等“四?!敝攸c(diǎn)中學(xué)2025年高三省重點(diǎn)高中三校聯(lián)考數(shù)學(xué)試題試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.982.拋物線的準(zhǔn)線與軸的交點(diǎn)為點(diǎn),過點(diǎn)作直線與拋物線交于、兩點(diǎn),使得是的中點(diǎn),則直線的斜率為()A. B. C.1 D.3.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.84.已知函數(shù)的圖像向右平移個(gè)單位長度后,得到的圖像關(guān)于軸對(duì)稱,,當(dāng)取得最小值時(shí),函數(shù)的解析式為()A. B.C. D.5.已知是邊長為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長到點(diǎn),使得,則的值為()A. B. C. D.6.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),,當(dāng)周長最小時(shí),所在直線的斜率為()A. B. C. D.7.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}8.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.9.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計(jì)理科數(shù)學(xué)成績不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.10010.函數(shù)的圖象大致為A. B. C. D.11.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米12.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.14.近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場上影響力不斷增大.動(dòng)力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動(dòng)新能源汽車發(fā)展的主要?jiǎng)恿?假定現(xiàn)在市售的某款新能源汽車上,車載動(dòng)力蓄電池充放電循環(huán)次數(shù)達(dá)到2000次的概率為85%,充放電循環(huán)次數(shù)達(dá)到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.15.已知函數(shù),則不等式的解集為____________.16.如圖,在棱長為2的正方體中,點(diǎn)、分別是棱,的中點(diǎn),是側(cè)面正方形內(nèi)一點(diǎn)(含邊界),若平面,則線段長度的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過作平行于軸的直線,設(shè)與終邊所在直線的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.18.(12分)設(shè)數(shù)列,其前項(xiàng)和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前n項(xiàng)和,并求證:.19.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(dòng)(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時(shí),證明:.平面(2)當(dāng)四面體的體積最大時(shí),求平面與平面所成銳二面角的余弦值.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;(Ⅱ)設(shè)點(diǎn),直線與曲線相交于,,求的值.21.(12分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.22.(10分)設(shè)函數(shù),(1)當(dāng),,求不等式的解集;(2)已知,,的最小值為1,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.2、B【解析】
設(shè)點(diǎn)、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點(diǎn),設(shè)點(diǎn)、,設(shè)直線的方程為,由于點(diǎn)是的中點(diǎn),則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,,解得,因此,直線的斜率為.故選:B.【點(diǎn)睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.3、B【解析】
利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.4、A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對(duì)稱性和得到A和.【詳解】因?yàn)殛P(guān)于軸對(duì)稱,所以,所以,的最小值是.,則,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時(shí)需注意x的系數(shù)和平移量之間的關(guān)系.5、D【解析】
設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.6、A【解析】
本道題繪圖發(fā)現(xiàn)三角形周長最小時(shí)A,P位于同一水平線上,計(jì)算點(diǎn)P的坐標(biāo),計(jì)算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計(jì)算三角形PAF周長最小值,即計(jì)算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點(diǎn)P運(yùn)動(dòng)到M點(diǎn)處,三角形周長最小,故此時(shí)M的坐標(biāo)為,所以斜率為,故選A.【點(diǎn)睛】本道題考查了拋物線的基本性質(zhì),難度中等.7、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.8、D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.9、D【解析】
由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對(duì)稱軸為,根據(jù)正態(tài)分布曲線的對(duì)稱性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績不低于110分的人數(shù)為人,故選:.【點(diǎn)睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.10、D【解析】
由題可得函數(shù)的定義域?yàn)?,因?yàn)?,所以函?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.11、D【解析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.12、B【解析】
首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點(diǎn)M、N在其四分之一的矩形的對(duì)角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對(duì)角線的端點(diǎn)處,所以所求的最短路徑的長度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問題,在解題的過程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、x﹣y=0.【解析】
先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對(duì)函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線斜率,最后利用點(diǎn)斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】
記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點(diǎn)睛】本題考查了條件概率的應(yīng)用,考查了學(xué)生概念理解,數(shù)學(xué)應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.15、【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計(jì)算能力,是一道中檔題.16、【解析】
取中點(diǎn),連結(jié),,推導(dǎo)出平面平面,從而點(diǎn)在線段上運(yùn)動(dòng),作于,由,能求出線段長度的取值范圍.【詳解】取中點(diǎn),連結(jié),,在棱長為2的正方體中,點(diǎn)、分別是棱、的中點(diǎn),,,,,平面平面,是側(cè)面正方形內(nèi)一點(diǎn)(含邊界),平面,點(diǎn)在線段上運(yùn)動(dòng),在等腰△中,,,作于,由等面積法解得:,,線段長度的取值范圍是,.故答案為:,.【點(diǎn)睛】本題考查線段長的取值范圍的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因?yàn)?,,所以,,所以函?shù)的最小正周期為.(2)因?yàn)?,所以,所以,故函?shù)在區(qū)間上的值域?yàn)?【點(diǎn)睛】本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡和計(jì)算能力.18、(1),;(2)詳見解析.【解析】
(1)當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)19、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而可得結(jié)論;(2)由題意,當(dāng)點(diǎn)位于點(diǎn)時(shí),四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運(yùn)算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時(shí).則其外接球的半徑為.因?yàn)闀r(shí)邊長為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因?yàn)椋詾榈闹悬c(diǎn).記的中點(diǎn)為,連接,.則,,,所以平面平面.因?yàn)槠矫?,所以平?(2)由題意,平面,則三棱錐的高不變.當(dāng)四面體的體積最大時(shí),的面積最大.所以當(dāng)點(diǎn)位于點(diǎn)時(shí),四面體的體積最大.以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.則,,,,.所以,,,.設(shè)平面的法向量為.則令,得.設(shè)平面的一個(gè)法向量為.則令,得.設(shè)平面與平面所成銳二面角是,則.所以當(dāng)四面體的體積最大時(shí),平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運(yùn)用平面與平面的平行、線面平行的判定,利用好空間向量是關(guān)鍵,屬于基礎(chǔ)題.20、(Ⅰ),;(Ⅱ).【解析】
(Ⅰ)由(為參數(shù))直接消去參數(shù),可得直線的普通方程,把兩邊同時(shí)乘以,結(jié)合,可得曲線的直角坐標(biāo)方程;(Ⅱ)把代入,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系及參數(shù)的幾何意義求解.【詳解】解:(Ⅰ)由(為參數(shù)),消去參數(shù),可得.∵,∴,即.∴曲線的直角坐標(biāo)方程為;(Ⅱ)把代入,得.設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則,.不妨設(shè),,∴.【點(diǎn)睛】本題考查簡單曲線的極坐標(biāo)方程,考查參數(shù)方程化普通方程,明確直線參數(shù)方程中參數(shù)的幾何意義是解題的關(guān)鍵,是中檔題.21、(Ⅰ)(Ⅱ)函數(shù)的定義域?yàn)椋涤驗(yàn)椤窘馕觥?/p>
(1)由為第二象限角及的值,利用同角三角函數(shù)間的基本關(guān)系求出及的值,再代入中即可得到結(jié)果.(2)函數(shù)解析式利用二倍角和輔助角公式將化為一個(gè)角的正弦函數(shù),根據(jù)的范圍,即可得到函數(shù)值域.【詳解】解:(1)因?yàn)槭堑诙笙藿?,且,所?所以,所以.(2)函數(shù)的定義域?yàn)?化簡,得,因?yàn)椋?,?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030高等教育行業(yè)市場發(fā)展分析及前景趨勢與投融資發(fā)展機(jī)會(huì)研究報(bào)告
- 2025-2030面筋行業(yè)市場現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030集中供暖行業(yè)發(fā)展分析及投資戰(zhàn)略研究報(bào)告
- 2025-2030酒店清潔用品行業(yè)發(fā)展分析及投資價(jià)值研究咨詢報(bào)告
- 新篇幅共繪藍(lán)圖(教學(xué)設(shè)計(jì))2023-2024學(xué)年初三下學(xué)期教育主題班會(huì)
- 三年級(jí)下冊(cè)科學(xué)教學(xué)設(shè)計(jì)-第一單元第1課時(shí)《種番茄》 粵教版
- 全國川教版信息技術(shù)九年級(jí)下冊(cè)第三單元第3節(jié)《評(píng)價(jià)交流 展示機(jī)器人成果》教學(xué)設(shè)計(jì)
- 物業(yè)經(jīng)理責(zé)任監(jiān)測協(xié)議
- 我造的花園(教學(xué)設(shè)計(jì))-2023-2024學(xué)年蘇少版美術(shù)六年級(jí)下冊(cè)
- 產(chǎn)品推廣臨時(shí)工合同
- 沖壓工理論知識(shí)試題(附答案)
- 全媒體運(yùn)營中的用戶畫像構(gòu)建試題及答案
- 2025年第三屆天揚(yáng)杯建筑業(yè)財(cái)稅知識(shí)競賽題庫附答案(601-700題)
- 華北電力大學(xué)丁肇豪:多主體數(shù)據(jù)中心算力-電力跨域協(xié)同優(yōu)化
- 科技公司費(fèi)用報(bào)銷制度及流程比較
- 顱內(nèi)出血護(hù)理操作
- 2024-2025學(xué)年下學(xué)期初中歷史八年級(jí)第二單元A卷
- 2024年紹興諸暨市水務(wù)集團(tuán)有限公司招聘考試真題
- 2025年新版供電營業(yè)規(guī)則考試題庫
- 2025年長白山職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫帶答案
- 剪映電腦版課件
評(píng)論
0/150
提交評(píng)論