




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆福建省龍巖市長(zhǎng)汀縣新橋中學(xué)高三第三次模擬考試試題數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.2.過(guò)拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.3.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實(shí)數(shù)a=()A.-1 B.1 C.0 D.24.已知點(diǎn)是拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿足,若取得最大值時(shí),點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.5.總體由編號(hào)為01,02,...,39,40的40個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為()A.23 B.21 C.35 D.326.設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.7.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=08.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.9.設(shè)點(diǎn),,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件10.函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為()A. B. C.2 D.11.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位C.向左平移個(gè)長(zhǎng)度單位 D.向左平移個(gè)長(zhǎng)度單位12.的展開(kāi)式中的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量滿足,則實(shí)數(shù)的取值范圍是____________.14.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為_(kāi)_______.15.已知數(shù)列的各項(xiàng)均為正數(shù),滿足,.,若是等比數(shù)列,數(shù)列的通項(xiàng)公式_______.16.已知集合,若,且,則實(shí)數(shù)所有的可能取值構(gòu)成的集合是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知與有兩個(gè)不同的交點(diǎn),其橫坐標(biāo)分別為().(1)求實(shí)數(shù)的取值范圍;(2)求證:.18.(12分)已知在中,角、、的對(duì)邊分別為,,,,.(1)若,求的值;(2)若,求的面積.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫(xiě)出直線的普通方程和圓的直角坐標(biāo)方程;(2)若點(diǎn)坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.20.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(diǎn)(1)求證:平面平面;(2)設(shè)為的中點(diǎn),為上的動(dòng)點(diǎn)(不與重合)求二面角的正切值的最小值21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,求的值.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
首先畫(huà)出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過(guò)點(diǎn)時(shí)直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題,求目標(biāo)函數(shù)的最值先畫(huà)出可行域,利用幾何意義求值,屬于中檔題.2、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.3、B【解析】
化簡(jiǎn)得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點(diǎn)睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計(jì)算能力.4、B【解析】
設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時(shí)的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí),,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來(lái)求解.5、B【解析】
根據(jù)隨機(jī)數(shù)表法的抽樣方法,確定選出來(lái)的第5個(gè)個(gè)體的編號(hào).【詳解】隨機(jī)數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個(gè)數(shù)字開(kāi)始,由左向右依次選取兩個(gè)數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號(hào)01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個(gè)編號(hào)為21.故選:B【點(diǎn)睛】本小題主要考查隨機(jī)數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.6、D【解析】
整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實(shí)部為0,虛部不為0,即可求解.【詳解】由題,,因?yàn)榧兲摂?shù),所以,則,故選:D【點(diǎn)睛】本題考查已知復(fù)數(shù)的類型求參數(shù)范圍,考查復(fù)數(shù)的除法運(yùn)算.7、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點(diǎn)評(píng):本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.8、B【解析】
利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,,解得.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.9、C【解析】
利用向量垂直的表示、向量數(shù)量積的運(yùn)算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點(diǎn),,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.10、C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,,,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.11、D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)長(zhǎng)度單位得到,故選D12、C【解析】由題意,根據(jù)二項(xiàng)式定理展開(kāi)式的通項(xiàng)公式,得展開(kāi)式的通項(xiàng)為,則展開(kāi)式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意計(jì)算,解得答案.【詳解】,故,解得.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積,意在考查學(xué)生的計(jì)算能力.14、【解析】
依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.15、【解析】
利用遞推關(guān)系,等比數(shù)列的通項(xiàng)公式即可求得結(jié)果.【詳解】因?yàn)?,所以,因?yàn)槭堑缺葦?shù)列,所以數(shù)列的公比為1.又,所以當(dāng)時(shí),有.這說(shuō)明在已知條件下,可以得到唯一的等比數(shù)列,所以,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)數(shù)列的問(wèn)題,涉及到的知識(shí)點(diǎn)有根據(jù)遞推公式求數(shù)列的通項(xiàng)公式,屬于簡(jiǎn)單題目.16、.【解析】
化簡(jiǎn)集合,由,以及,即可求出結(jié)論.【詳解】集合,若,則的可能取值為,0,2,3,又因?yàn)?,所以?shí)數(shù)所有的可能取值構(gòu)成的集合是.故答案為:.【點(diǎn)睛】本題考查集合與元素的關(guān)系,理解題意是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析【解析】
(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點(diǎn)的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時(shí);;時(shí).(2)①過(guò)點(diǎn),的直線為,則令,,,.②過(guò)點(diǎn),的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點(diǎn)的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點(diǎn)的橫坐標(biāo)依次為,.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于較難題.18、(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了分析能力和計(jì)算能力,屬于中檔題.19、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標(biāo)方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達(dá)定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標(biāo)方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實(shí)數(shù)根,所以t1+t2=3又直線l過(guò)點(diǎn)P,A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.20、(1)見(jiàn)解析(2)【解析】
(1)推導(dǎo)出,,從而平面,由面面垂直的判定定理即可得證.(2)過(guò)作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,設(shè),利用空間向量法表示出二面角的余弦值,當(dāng)余弦值取得最大時(shí),正切值求得最小值;【詳解】(1)因?yàn)椋?,,平面,平面,平面,又平面,平面平面;?)過(guò)作,以為坐標(biāo)原點(diǎn),建立如圖所示空間坐標(biāo)系,則,設(shè),則平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為則,即,令,如圖二面角的平面角為銳角,設(shè)二面角為,則,時(shí)取得最大值,最大值為,則最小值為【點(diǎn)睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問(wèn)題,屬于中檔題.21、(1)(2)5【解析】
(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設(shè),,由直線的參數(shù)方程參數(shù)的幾何意義得:【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.22、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼材加工安裝合同范本
- 合伙創(chuàng)業(yè)分紅合同范本
- 吉林省吉林市吉林高新技術(shù)產(chǎn)業(yè)開(kāi)發(fā)區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期12月期末考試數(shù)學(xué)試卷(含解析)
- 雕塑進(jìn)貨出售合同范本
- 砂石土方運(yùn)輸合同范本
- 豆粨采購(gòu)合同范本
- 《2025租賃合同終極大典》
- 出售球拍合同范本
- 山東省日照市2025屆高三下學(xué)期一模試題 政治 無(wú)答案
- 2024年揚(yáng)州市廣陵區(qū)教育系統(tǒng)事業(yè)單位招聘教師真題
- 2025-2030年中國(guó)CAE軟件行業(yè)市場(chǎng)行情監(jiān)測(cè)及發(fā)展前景研判報(bào)告
- 2025江西南昌市江銅產(chǎn)融社會(huì)招聘1人筆試參考題庫(kù)附帶答案詳解
- (二統(tǒng))昆明市2025屆“三診一?!备呷龔?fù)習(xí)教學(xué)質(zhì)量檢測(cè)地理試卷(含答案)
- Unit 3 Keep Fit Section A 2a-2e 教學(xué)設(shè)計(jì) 2024-2025學(xué)年人教版(2024)七年級(jí)英語(yǔ)下冊(cè)
- 2025徽縣輔警考試題庫(kù)
- (一模)2025年廣東省高三高考模擬測(cè)試 (一) 卷數(shù)學(xué)試卷(含官方答案)
- 腦心健康管理師的學(xué)習(xí)匯報(bào)
- 樹(shù)木移植合同范本
- 2025年開(kāi)封大學(xué)單招職業(yè)技能測(cè)試題庫(kù)新版
- 2025年張家界航空工業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及參考答案
- 財(cái)政投資評(píng)審咨詢服務(wù)預(yù)算和結(jié)算評(píng)審項(xiàng)目投標(biāo)文件(技術(shù)方案)
評(píng)論
0/150
提交評(píng)論