




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市黃浦區(qū)大同中學(xué)2025屆高三下學(xué)期期末大聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,,,若,則實(shí)數(shù)()A. B. C. D.2.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實(shí)數(shù),則()A. B. C. D.3.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.24.已知菱形的邊長(zhǎng)為2,,則()A.4 B.6 C. D.5.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-26.寧波古圣王陽明的《傳習(xí)錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.7.已知拋物線,過拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.8.已知是橢圓和雙曲線的公共焦點(diǎn),是它們的-一個(gè)公共點(diǎn),且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.9.已知向量,,則向量在向量上的投影是()A. B. C. D.10.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.11.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點(diǎn),已知過與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.12.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若點(diǎn)為點(diǎn)在平面上的正投影,則記.如圖,在棱長(zhǎng)為1的正方體中,記平面為,平面為,點(diǎn)是線段上一動(dòng)點(diǎn),.給出下列四個(gè)結(jié)論:①為的重心;②;③當(dāng)時(shí),平面;④當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號(hào)是________________.14.若滿足,則目標(biāo)函數(shù)的最大值為______.15.如圖,是圓的直徑,弦的延長(zhǎng)線相交于點(diǎn)垂直的延長(zhǎng)線于點(diǎn).求證:16.的展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)為_________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.18.(12分)在平面直角坐標(biāo)系中,已知拋物線C:()的焦點(diǎn)F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點(diǎn),交該拋物線的準(zhǔn)線于D,E兩點(diǎn).(1)求拋物線C的方程;(2)若F在線段上,P是的中點(diǎn),證明:.19.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的取值范圍;(2)求證:對(duì)上的任意兩個(gè)實(shí)數(shù),,總有成立.20.(12分)函數(shù),且恒成立.(1)求實(shí)數(shù)的集合;(2)當(dāng)時(shí),判斷圖象與圖象的交點(diǎn)個(gè)數(shù),并證明.(參考數(shù)據(jù):)21.(12分)唐詩是中國文學(xué)的瑰寶.為了研究計(jì)算機(jī)上唐詩分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩分成7大類別,并從《全唐詩》48900多篇唐詩中隨機(jī)抽取了500篇,統(tǒng)計(jì)了每個(gè)類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛情婚姻詠史懷古邊塞戰(zhàn)爭(zhēng)山水田園交游送別羈旅思鄉(xiāng)其他總計(jì)篇數(shù)100645599917318500含“山”字的篇數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從《全唐詩》含“山”字的唐詩中隨機(jī)抽取一篇,則它屬于哪個(gè)類別的可能性最大,屬于哪個(gè)類別的可能性最小,并分別估計(jì)該唐詩屬于這兩個(gè)類別的概率;(2)已知檢索關(guān)鍵字的選取規(guī)則為:①若有超過95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;②若“某字”被選為“某類別”關(guān)鍵字,則由其對(duì)應(yīng)列聯(lián)表得到的的觀測(cè)值越大,排名就越靠前;設(shè)“山”“簾”“花”和“愛情婚姻”對(duì)應(yīng)的觀測(cè)值分別為,,.已知,,請(qǐng)完成下面列聯(lián)表,并從上述三個(gè)字中選出“愛情婚姻”類別的關(guān)鍵字并排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計(jì)含“花”字的篇數(shù)不含“花”的篇數(shù)總計(jì)附:,其中.0.050.0250.0103.8415.0246.63522.(10分)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.2.B【解析】
可設(shè),將化簡(jiǎn),得到,由復(fù)數(shù)為實(shí)數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的模長(zhǎng)、除法運(yùn)算,由復(fù)數(shù)的類型求解對(duì)應(yīng)參數(shù),屬于基礎(chǔ)題3.B【解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因?yàn)椋?,所以,所以,故選:B【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.4.B【解析】
根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長(zhǎng)為2,,∴,∴,∴,且,∴,故選B.【點(diǎn)睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問題,屬于基礎(chǔ)題..5.B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計(jì)算能力,屬于中等題.6.B【解析】
根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點(diǎn)睛】本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7.A【解析】
設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.8.A【解析】
設(shè)橢圓的半長(zhǎng)軸長(zhǎng)為,雙曲線的半長(zhǎng)軸長(zhǎng)為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡(jiǎn)求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的長(zhǎng)半軸長(zhǎng)為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡(jiǎn)得,即.故選:A【點(diǎn)睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.9.A【解析】
先利用向量坐標(biāo)運(yùn)算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點(diǎn)睛】本題考查了向量加法、減法的坐標(biāo)運(yùn)算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10.D【解析】
,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.11.D【解析】
建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離.【詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D【點(diǎn)睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識(shí).12.B【解析】
先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點(diǎn)睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時(shí)可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進(jìn)行判斷.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】
①點(diǎn)在平面內(nèi)的正投影為點(diǎn),而正方體的體對(duì)角線與和它不相交的的面對(duì)角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點(diǎn),連接,則點(diǎn)在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對(duì)應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當(dāng)點(diǎn)到平面的距離最大時(shí),三棱錐的體積最大,而當(dāng)點(diǎn)與點(diǎn)重合時(shí),點(diǎn)到平面的距離最大,此時(shí)為棱長(zhǎng)為的正四面體,其外接球半徑,則球,所以④錯(cuò)誤.【詳解】因?yàn)椋B接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當(dāng)與重合時(shí),最大,為棱長(zhǎng)為的正四面體,其外接球半徑,則球,所以④錯(cuò)誤.故答案為:①②③【點(diǎn)睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.14.-1【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最大,由得即,則有最大值,故答案為.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.15.證明見解析.【解析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.16.5670【解析】
根據(jù)二項(xiàng)式展開的通項(xiàng),可得二項(xiàng)式系數(shù)的最大項(xiàng),可求得其系數(shù).【詳解】二項(xiàng)展開式一共有項(xiàng),所以由二項(xiàng)式系數(shù)的性質(zhì)可知二項(xiàng)式系數(shù)最大的項(xiàng)為第5項(xiàng),系數(shù)為.故答案為:5670【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式的應(yīng)用,由通項(xiàng)公式求二項(xiàng)式系數(shù),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(Ⅰ)當(dāng)時(shí),不等式為.若,則,解得或,結(jié)合得或.若,則,不等式恒成立,結(jié)合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡(jiǎn)得,解得,結(jié)合,得的取值范圍為.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.18.(1);(2)見解析【解析】
(1)根據(jù)拋物線的焦點(diǎn)在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設(shè)直線,的方程分別為和且,,,可得,,,的坐標(biāo),進(jìn)而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設(shè),,則,根據(jù)直線的斜率不為0,設(shè)出直線的方程為,聯(lián)立直線和拋物線的方程,結(jié)合韋達(dá)定理,分別求出,,化簡(jiǎn),即可得證.【詳解】(1)拋物線C的焦點(diǎn)坐標(biāo)為,且該點(diǎn)在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點(diǎn)F在線段上,可設(shè)直線,的方程分別為和且,,,則,,,.∴直線的方程為,即.又點(diǎn)在線段上,∴.∵P是的中點(diǎn),∴∴,.由于,不重合,所以法二:設(shè),,則當(dāng)直線的斜率為0時(shí),不符合題意,故可設(shè)直線的方程為聯(lián)立直線和拋物線的方程,得又,為該方程兩根,所以,,,.,由于,不重合,所以【點(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線的定義,考查直線與拋物線的位置關(guān)系,屬于中檔題.19.(1)(2)見解析【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設(shè),求出即可得到參數(shù)的取值范圍;(2)不妨設(shè),,,利用導(dǎo)數(shù)說明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設(shè),∵函數(shù)在上單調(diào)遞增,∴,∴,∴實(shí)數(shù)的取值范圍為.(2)不妨設(shè),,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當(dāng)時(shí),.∵,∴.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值,利用導(dǎo)數(shù)證明不等式,考查了推理能力與計(jì)算能力,屬于難題.20.(1);(2)2個(gè),證明見解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點(diǎn)個(gè)數(shù)轉(zhuǎn)化為方程實(shí)數(shù)解的個(gè)數(shù)問題,然后構(gòu)造函數(shù),再利用導(dǎo)數(shù)討論此函數(shù)零點(diǎn)的個(gè)數(shù).【詳解】(1)的定義域?yàn)?,因?yàn)椋?°當(dāng)時(shí),在上單調(diào)遞減,時(shí),使得,與條件矛盾;2°當(dāng)時(shí),由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時(shí),,要使恒成立,故.(2)原問題轉(zhuǎn)化為方程實(shí)根個(gè)數(shù)問題,當(dāng)時(shí),圖象與圖象有且僅有2個(gè)交點(diǎn),理由如下:由,即,令,因?yàn)?,所以是的一根;?°當(dāng)時(shí),,所以在上單調(diào)遞減,,即在上無實(shí)根;2°當(dāng)時(shí),,則在上單調(diào)遞遞增,又,所以在上有唯一實(shí)根,且滿足,①當(dāng)時(shí),在上單調(diào)遞減,此時(shí)在上無實(shí)根;②當(dāng)時(shí),在上單調(diào)遞增,,故在上有唯一實(shí)根.3°當(dāng)時(shí),由(1)知,在上單調(diào)遞增,所以,故,所以在上無實(shí)根.綜合1°,2°,3°,故有兩個(gè)實(shí)根,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025集體土地使用權(quán)轉(zhuǎn)讓合同書
- 體育運(yùn)動(dòng)訓(xùn)練方法與運(yùn)動(dòng)生理學(xué)知識(shí)聯(lián)系試題
- 鄉(xiāng)村旅游發(fā)展策略手冊(cè)
- 水利信息化與智能化技術(shù)作業(yè)指導(dǎo)書
- 建筑設(shè)計(jì)及可持續(xù)性發(fā)展作業(yè)指導(dǎo)書
- 電子競(jìng)技行業(yè)電競(jìng)場(chǎng)館建設(shè)與運(yùn)營方案
- 2025年河北省張家口市一??荚嚮瘜W(xué)試題(原卷版+解析版)
- 會(huì)展產(chǎn)業(yè)數(shù)字化轉(zhuǎn)型及活動(dòng)組織流程再造方案
- 2025年鄉(xiāng)村醫(yī)生考試題庫:農(nóng)村藥物使用與臨床護(hù)理技巧試題匯編
- 如何做好目標(biāo)管理
- 2025年山東省濟(jì)南市市中區(qū)中考物理一模試卷(無答案)
- 2025年全國中小學(xué)生安全教育日專題
- 氯化銨安全技術(shù)說明書MSDS
- 河海大學(xué)材料力學(xué)第五章彎曲應(yīng)力
- 關(guān)于建立涉農(nóng)貸款專項(xiàng)統(tǒng)計(jì)制的通知銀發(fā)號(hào)
- 出境領(lǐng)隊(duì)服務(wù)程序與規(guī)范(共36頁).ppt
- 螺桿設(shè)計(jì)說明書
- 常用螺電批扭力選用對(duì)照表
- 幼兒園安全問題的研究
- 特種橡膠項(xiàng)目可行性分析報(bào)告(范文參考)
- 電度表檢驗(yàn)報(bào)告格式(共4頁)
評(píng)論
0/150
提交評(píng)論