




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆北京市房山區(qū)市級名校高三全國高校招生模擬考試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則實數(shù)的大小關(guān)系為()A. B. C. D.2.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q3.已知集合,,則A. B.C. D.4.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.5.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.106.命題:的否定為A. B.C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.48.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a9.若為虛數(shù)單位,則復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學生的成績,并根據(jù)這2000名學生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學生人數(shù)為()A.800 B.1000 C.1200 D.160011.已知等比數(shù)列滿足,,則()A. B. C. D.12.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.40二、填空題:本題共4小題,每小題5分,共20分。13.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為______.14.函數(shù)在的零點個數(shù)為_________.15.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.16.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當時,求證:對于,恒成立;(3)若存在,使得當時,恒有成立,試求的取值范圍.18.(12分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.19.(12分)已知函數(shù)(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.21.(12分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關(guān)于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.22.(10分)已知中,角所對邊的長分別為,且(1)求角的大??;(2)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大小;若真數(shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.2、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。3、D【解析】
因為,,所以,,故選D.4、A【解析】
求導得到,根據(jù)切線方程得到,故,設(shè),求導得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導數(shù)求最值,意在考查學生的計算能力和綜合應用能力.5、C【解析】
取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點睛】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.6、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.7、C【解析】試題分析:根據(jù)題意,當時,令,得;當時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.8、C【解析】
兩復數(shù)相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數(shù)的概念,屬于基礎(chǔ)題.9、D【解析】
根據(jù)復數(shù)的運算,化簡得到,再結(jié)合復數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復數(shù)的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何意義,其中解答中熟記復數(shù)的運算法則,準確化簡復數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、B【解析】
由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應用,屬基礎(chǔ)題.11、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.12、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數(shù)項=80,由5-2r=-1得r=3,對應的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=40二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).14、1【解析】
本問題轉(zhuǎn)化為曲線交點個數(shù)問題,在同一直角坐標系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進行求解即可.【詳解】問題函數(shù)在的零點個數(shù),可以轉(zhuǎn)化為曲線交點個數(shù)問題.在同一直角坐標系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當時,兩個函數(shù)只有一個交點.故答案為:1【點睛】本題考查了求函數(shù)的零點個數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.15、.【解析】
由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進而可求,然后結(jié)合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.16、80211【解析】
由,利用二項式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點睛】本題考查了二項式定理的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對函數(shù)求導后,利用導數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當時,.解得.當時,解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當時,由題意,當時,恒成立.,∴當時,恒成立,單調(diào)遞減.又,∴當時,恒成立,即.∴對于,恒成立.(3)因為.由(2)知,當時,恒成立,即對于,,不存在滿足條件的;當時,對于,,此時.∴,即恒成立,不存在滿足條件的;當時,令,可知與符號相同,當時,,,單調(diào)遞減.∴當時,,即恒成立.綜上,的取值范圍為.點睛:本題主要考查導數(shù)和單調(diào)區(qū)間,導數(shù)與不等式的證明,導數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導數(shù)問題的基本題型,也是基本功,先求定義域,然后求導,要注意通分和因式分解.二、三兩問一個是恒成立問題,一個是存在性問題,要注意取值是最大值還是最小值.18、(1)線的普通方程為,曲線的直角坐標方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進而利用即可化為極坐標方程,同理可得曲線C2的直角坐標方程;
(2)由過的圓心,得得,設(shè),,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標方程為曲線的直角坐標方程為(2)在直角坐標系下,,,恰好過的圓心,
∴由得,是橢圓上的兩點,在極坐標下,設(shè),分別代入中,有和∴,則,即19、(1)證明見解析(2)【解析】
(1)根據(jù),求導,令,用導數(shù)法求其最小值.設(shè)研究在處左正右負,求導,分,,三種情況討論求解.【詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當時,,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當時,所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當時,,使得,即,但當時,即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點睛】本題主要考查導數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.20、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結(jié)合可將曲線的極坐標方程化為直角坐標方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數(shù)方程、極坐標方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.21、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設(shè)點的坐標,表達出直線的斜率之積,再根據(jù)三點均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達式列式求解即可.(Ⅱ)設(shè)直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設(shè),,則,又,,故,即,故,又,故.故橢圓的標準方程為.(Ⅱ)設(shè)直線的方程為,,由,故,又,故,因為處的切線相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達定理有設(shè),則.當且僅當時取等號.故的面積的最大值為.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融機構(gòu)財務(wù)風險評估與風險管理顧問協(xié)議
- 生態(tài)旅游區(qū)場地合作開發(fā)合同
- 境外旅游團隊領(lǐng)隊服務(wù)合同模板
- 長途運輸車輛事故賠償及保險理賠協(xié)議
- 物流終止合作協(xié)議書范本
- 醫(yī)療授權(quán)協(xié)議書范本
- 外資企業(yè)代理記賬與外匯管理合同
- 地鐵隧道工程安裝施工安全責任協(xié)議
- 農(nóng)業(yè)生產(chǎn)基地場地租賃保證金及農(nóng)產(chǎn)品質(zhì)量安全合同
- 企業(yè)辦公樓場地租賃及物業(yè)服務(wù)委托協(xié)議
- 2025年四川瀘州兩江投資控股集團有限公司及下屬子公司招聘筆試參考題庫含答案解析
- 公司設(shè)備設(shè)施管理制度
- 2025年幼兒園教師招聘考試試題及答案
- 2026年上海中考英語一輪復習:考綱詞匯一詞多義詞清單
- 譯文文學性再現(xiàn)與譯者主體性發(fā)揮的對比研究
- 2025年保安人員職業(yè)資格考試試題及答案
- 2025高考化學復習新題速遞之有機合成(解答大題)(2025年4月)
- 《體重管理》課件
- 宗教與中國化課件
- 內(nèi)江市市中區(qū)2025屆小升初必考題數(shù)學檢測卷含解析
- CNAS-CI01:2012 檢查機構(gòu)能力認可準則
評論
0/150
提交評論