




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省華師附中2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.2.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.3.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應(yīng)的點是()A.點A B.點B C.點C D.點D4.已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°5.關(guān)于x的方程12x=kA.0或126.某校40名學(xué)生參加科普知識競賽(競賽分數(shù)都是整數(shù)),競賽成績的頻數(shù)分布直方圖如圖所示,成績的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分7.如圖,點A、B、C、D、O都在方格紙的格點上,若△COD是由△AOB繞點O按逆時針方向旋轉(zhuǎn)而得,則旋轉(zhuǎn)的角度為()A.30° B.45°C.90° D.135°8.如圖,直線AB∥CD,則下列結(jié)論正確的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°9.如圖,兩個反比例函數(shù)y1=(其中k1>0)和y2=在第一象限內(nèi)的圖象依次是C1和C2,點P在C1上.矩形PCOD交C2于A、B兩點,OA的延長線交C1于點E,EF⊥x軸于F點,且圖中四邊形BOAP的面積為6,則EF:AC為()A.:1 B.2: C.2:1 D.29:1410.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)二、填空題(共7小題,每小題3分,滿分21分)11.我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達點B處,則問題中葛藤的最短長度是尺.
12.分解因式:mx2﹣6mx+9m=_____.13.圓錐底面圓的半徑為3,高為4,它的側(cè)面積等于_____(結(jié)果保留π).14.將數(shù)字37000000用科學(xué)記數(shù)法表示為_____.15.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.16.計算:+(|﹣3|)0=_____.17.若關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD、小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,然后沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,(斜坡的鉛直高度與水平寬度的比),經(jīng)過測量AB=10米,AE=15米,求點B到地面的距離;求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果保留根號)19.(5分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個交點,求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,則另一個交點的坐標為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點A(3,0),連接AC,點P是拋物線位于線段AC下方圖象上的任意一點,求△PAC面積的最大值.20.(8分)對于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號,得3x﹣2x﹣2=1②合并同類項,得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過程中的錯誤步驟有(填序號);請寫出正確的解答過程.21.(10分)端午節(jié)“賽龍舟,吃粽子”是中華民族的傳統(tǒng)習(xí)俗.節(jié)日期間,小邱家包了三種不同餡的粽子,分別是:紅棗粽子(記為A),豆沙粽子(記為B),肉粽子(記為C),這些粽子除了餡不同,其余均相同.粽子煮好后,小邱的媽媽給一個白盤中放入了兩個紅棗粽子,一個豆沙粽子和一個肉粽子;給一個花盤中放入了兩個肉粽子,一個紅棗粽子和一個豆沙粽子.根據(jù)以上情況,請你回答下列問題:假設(shè)小邱從白盤中隨機取一個粽子,恰好取到紅棗粽子的概率是多少?若小邱先從白盤里的四個粽子中隨機取一個粽子,再從花盤里的四個粽子中隨機取一個粽子,請用列表法或畫樹狀圖的方法,求小邱取到的兩個粽子中一個是紅棗粽子、一個是豆沙粽子的概率.22.(10分)如圖,在一次測量活動中,小華站在離旗桿底部(B處)6米的D處,仰望旗桿頂端A,測得仰角為60°,眼睛離地面的距離ED為1.5米.試幫助小華求出旗桿AB的高度.(結(jié)果精確到0.1米,).23.(12分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結(jié)果提前5天完成任務(wù),原計劃每天種多少棵樹?24.(14分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.2、C【解析】
主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關(guān)鍵是熟練的掌握截一個幾何體.3、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據(jù)數(shù)軸可知本題中點B所表示的數(shù)的絕對值最小.故選B.4、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運用.5、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當(dāng)整式方程無解時,2k-1=0,k=12當(dāng)分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.6、C【解析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內(nèi),所以中位數(shù)落在70.5~80.5分.故選C.點睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關(guān)鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).7、C【解析】
根據(jù)勾股定理求解.【詳解】設(shè)小方格的邊長為1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故選C.【點睛】考點:勾股定理逆定理.8、D【解析】分析:依據(jù)AB∥CD,可得∠3+∠5=180°,再根據(jù)∠5=∠4,即可得出∠3+∠4=180°.詳解:如圖,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故選D.點睛:本題考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補.9、A【解析】試題分析:首先根據(jù)反比例函數(shù)y2=的解析式可得到=×3=,再由陰影部分面積為6可得到=9,從而得到圖象C1的函數(shù)關(guān)系式為y=,再算出△EOF的面積,可以得到△AOC與△EOF的面積比,然后證明△EOF∽△AOC,根據(jù)對應(yīng)邊之比等于面積比的平方可得到EF﹕AC=.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義10、A【解析】
首先根據(jù)各選項棋子的位置,進而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當(dāng)擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當(dāng)擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當(dāng)擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當(dāng)擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】試題分析:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題,根據(jù)勾股定理可求出葛藤長為=1(尺).故答案為1.考點:平面展開最短路徑問題12、m(x﹣3)1.【解析】
先把m提出來,然后對括號里面的多項式用公式法分解即可。【詳解】m=m(=m【點睛】解題的關(guān)鍵是熟練掌握因式分解的方法。13、15π【解析】
根據(jù)圓的面積公式、扇形的面積公式計算即可.【詳解】圓錐的母線長==5,,圓錐底面圓的面積=9π圓錐底面圓的周長=2×π×3=6π,即扇形的弧長為6π,∴圓錐的側(cè)面展開圖的面積=×6π×5=15π,【點睛】本題考查的是扇形的面積,熟練掌握扇形和圓的面積公式是解題的關(guān)鍵.14、3.7×107【解析】
根據(jù)科學(xué)記數(shù)法即可得到答案.【詳解】數(shù)字37000000用科學(xué)記數(shù)法表示為3.7×107.【點睛】本題主要考查了科學(xué)記數(shù)法的基本概念,解本題的要點在于熟知科學(xué)記數(shù)法的相關(guān)知識.15、5【解析】
作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結(jié)論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設(shè)CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點睛】本題考查了等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關(guān)鍵,并利用方程的思想解決問題.16、【解析】原式=.17、k<5且k≠1.【解析】試題解析:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,解得:且故答案為且三、解答題(共7小題,滿分69分)18、(1)2;(2)宣傳牌CD高(20﹣1)m.【解析】試題分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到結(jié)果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如圖,過點B作BF⊥CE,垂足為F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得結(jié)果.試題解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.答:點B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如圖,過點B作BF⊥CE,垂足為F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:廣告牌CD的高度約為(20﹣1)米.19、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當(dāng)a=時,△PAC的面積取最大值,最大值為【解析】
(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個交點,利用根的判別式△=0,即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對稱軸,利用二次函數(shù)圖象的對稱性即可找出另一個交點的坐標;(4)將點A的坐標代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點A、C的坐標,利用待定系數(shù)法可求出直線AC的解析式,過點P作PD⊥x軸于點D,交AC于點Q,設(shè)點P的坐標為(a,a2-2a-2),則點Q的坐標為(a,a-2),點D的坐標為(a,0),根據(jù)三角形的面積公式可找出S△ACP關(guān)于a的函數(shù)關(guān)系式,配方后即可得出△PAC面積的最大值.【詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個交點,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,∴另一交點的橫坐標為2×2﹣4=﹣2,∴另一個交點的坐標為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設(shè)直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點P作PD⊥x軸于點D,交AC于點Q,如圖所示.設(shè)點P的坐標為(a,a2﹣2a﹣2),則點Q的坐標為(a,a﹣2),點D的坐標為(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=PQ?OD+PQ?AD=﹣a2+a=﹣(a﹣)2+,∴當(dāng)a=時,△PAC的面積取最大值,最大值為.【點睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、拋物線與x軸的交點、二次函數(shù)的性質(zhì)以及二次函數(shù)的最值,解題的關(guān)鍵是:(2)代入點的坐標求出n值;(2)牢記當(dāng)△=b2-4ac=0時拋物線與x軸只有一個交點;(2)利用二次函數(shù)的對稱軸求出另一交點的坐標;(4)利用三角形的面積公式找出S△ACP關(guān)于a的函數(shù)關(guān)系式.20、(1)錯誤步驟在第①②步.(2)x=4.【解析】
(1)第①步在去分母的時候,兩邊同乘以6,但是方程右邊沒有乘,另外在去括號時沒有注意到符號的變化,所以出現(xiàn)錯誤;(2)注重改正錯誤,按以上步驟進行即可.【詳解】解:(1)方程兩邊同乘6,得3x﹣2(x﹣1)=6①去括號,得3x﹣2x+2=6②∴錯誤步驟在第①②步.(2)方程兩邊同乘6,得3x﹣2(x﹣1)=6去括號,得3x﹣2x+2=6合并同類項,得x+2=6解得x=4∴原方程的解為x=4【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共營養(yǎng)領(lǐng)域的科技進步與考試內(nèi)容的更新試題及答案
- 衛(wèi)生管理證書考試學(xué)習(xí)適合的資料試題及答案
- 粵語社會測試題及答案
- 激光技術(shù)的國際合作機會考題試題及答案
- 老年護理與社會支持試題及答案
- 藥劑學(xué)實踐案例試題及答案
- 激光技術(shù)工程師證書考試復(fù)習(xí)寶典與試題及答案
- 藥學(xué)職業(yè)道德及法律問題試題及答案
- 激光技術(shù)全面復(fù)習(xí)題庫試題及答案
- 藥劑學(xué)與智能科技的結(jié)合實例試題及答案
- 國開2024年秋《機電控制工程基礎(chǔ)》形考任務(wù)1-4
- 《義務(wù)教育語文課程標準》2022年修訂版原版
- 合理用藥管理制度
- 紅十字會突發(fā)事件應(yīng)急預(yù)案
- GB 30254-2024高壓三相籠型異步電動機能效限定值及能效等級
- 2024年保密知識測試試題帶答案(考試直接用)
- 少兒編程培訓(xùn)機構(gòu)規(guī)章制度
- 重大事故隱患判定標準與相關(guān)事故案例培訓(xùn)課件
- 2024-2030年下一代測序(NGS)行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究分析報告
- GA 2108-2023警鞋禮服男皮鞋
- 四川省樂山市夾江縣2023-2024學(xué)年八年級下學(xué)期期末數(shù)學(xué)試題
評論
0/150
提交評論