版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1,主要內(nèi)容 推理的形式結(jié)構(gòu) 推理的正確與錯誤 推理的形式結(jié)構(gòu) 判斷推理正確的方法 推理定律 自然推理系統(tǒng)P 形式系統(tǒng)的定義與分類 自然推理系統(tǒng)P 在P中構(gòu)造證明:直接證明法、附加前提證明法、歸謬法,第三章 命題邏輯的推理理論,2,3.1 推理的形式結(jié)構(gòu),定義3.1 設(shè)A1, A2, , Ak, B為命題公式. 若對于每組賦值, A1A2 Ak 為假,或當A1A2Ak為真時,B也為真, 則稱由前提A1, A2, , Ak推出結(jié)論B的推理是有效的或正確 的, 并稱B是有效結(jié)論.,定理3.1 由命題公式A1, A2, , Ak 推B的推理正確當且僅當 A1A2AkB為重言式 注意: 推理正確不能保
2、證結(jié)論一定正確,3,推理的形式結(jié)構(gòu),2. A1A2AkB 若推理正確, 記為A1 A2 Ak B 3. 前提: A1, A2, , Ak 結(jié)論: B 判斷推理是否正確的方法: 真值表法 等值演算法 主析取范式法,推理的形式結(jié)構(gòu) 1. A1, A2, , Ak B 若推理正確, 記為A1,A2,An B,4,推理實例,例1 判斷下面推理是否正確 (1) 若今天是1號,則明天是5號. 今天是1號. 所以, 明天是5號. (2) 若今天是1號,則明天是5號. 明天是5號. 所以, 今天是1號.,解 設(shè) p:今天是1號,q:明天是5號. (1) 推理的形式結(jié)構(gòu):,(pq)pq,用等值演算法 (pq)p
3、q (pq)p)q pqq 1 由定理3.1可知推理正確,5,推理實例,(2) 推理的形式結(jié)構(gòu):,(pq)qp,用主析取范式法 (pq)qp (pq)qp (pq)q)p qp (pq)(pq) (pq)(pq) m0m2m3 結(jié)果不含m1, 故01是成假賦值,所以推理不正確,6,推理定律重言蘊涵式,1. A (AB) 附加律 2. (AB) A 化簡律 3. (AB)A B 假言推理 4. (AB)B A 拒取式 5. (AB)B A 析取三段論 6. (AB)(BC) (AC) 假言三段論 7. (AB)(BC) (AC) 等價三段論 8. (AB)(CD)(AC) (BD) 構(gòu)造性二難
4、(AB)(AB) B 構(gòu)造性二難(特殊形式) 9. (AB)(CD)( BD) (AC) 破壞性二難 每個等值式可產(chǎn)生兩個推理定律 如, 由AA可產(chǎn)生 AA 和 AA,7,3.2 自然推理系統(tǒng)P,定義3.2 一個形式系統(tǒng) I 由下面四個部分組成: (1) 非空的字母表,記作 A(I). (2) A(I) 中符號構(gòu)造的合式公式集,記作 E(I). (3) E(I) 中一些特殊的公式組成的公理集,記作 AX(I). (4) 推理規(guī)則集,記作 R(I). 記I=, 其中是 I 的 形式語言系統(tǒng), 是 I 的形式演算系統(tǒng). 自然推理系統(tǒng): 無公理, 即AX(I)= 公理推理系統(tǒng) 推出的結(jié)論是系統(tǒng)中的重
5、言式, 稱作定理,8,自然推理系統(tǒng)P,定義3.3 自然推理系統(tǒng) P 定義如下: 1. 字母表 (1) 命題變項符號:p, q, r, , pi, qi, ri, (2) 聯(lián)結(jié)詞符號:, , , , (3) 括號與逗號:(, ), , 2. 合式公式(同定義1.6) 3. 推理規(guī)則 (1) 前提引入規(guī)則 (2) 結(jié)論引入規(guī)則 (3) 置換規(guī)則,9,推理規(guī)則,(4) 假言推理規(guī)則 (6) 化簡規(guī)則 (8) 假言三段論規(guī)則,(5) 附加規(guī)則 (7) 拒取式規(guī)則 (9) 析取三段論規(guī)則,10,推理規(guī)則,(10) 構(gòu)造性二難推理規(guī)則 (11) 破壞性二難推理規(guī)則 (12) 合取引入規(guī)則,11,在自然推理
6、系統(tǒng)P中構(gòu)造證明,設(shè)前提A1, A2, Ak,結(jié)論B及公式序列C1, C2, Cl. 如果每 一個Ci(1il)是某個Aj, 或者可由序列中前面的公式應(yīng)用推理 規(guī)則得到, 并且Cl =B, 則稱這個公式序列是由A1, A2, Ak推 出B的證明 例2 構(gòu)造下面推理的證明: 若明天是星期一或星期三,我明天就有課. 若我明天有 課,今天必備課. 我今天沒備課. 所以,明天不是星期一、 也不是星期三. 解 (1) 設(shè)命題并符號化 設(shè) p:明天是星期一,q:明天是星期三, r:我明天有課,s:我今天備課,12,直接證明法,(2) 寫出證明的形式結(jié)構(gòu) 前提:(pq)r, rs, s 結(jié)論:pq (3)
7、證明 rs 前提引入 s 前提引入 r 拒取式 (pq)r 前提引入 (pq) 拒取式 pq 置換,13,附加前提證明法,附加前提證明法 適用于結(jié)論為蘊涵式 欲證 前提:A1, A2, , Ak 結(jié)論:CB 等價地證明 前提:A1, A2, , Ak, C 結(jié)論:B 理由: (A1A2Ak)(CB) ( A1A2Ak)(CB) ( A1A2AkC)B (A1A2AkC)B,14,附加前提證明法實例,例3 構(gòu)造下面推理的證明 2是素數(shù)或合數(shù). 若2是素數(shù),則 是無理數(shù). 若 是無理數(shù),則4不是素數(shù). 所以,如果4是素數(shù),則2是合數(shù). 解 用附加前提證明法構(gòu)造證明 (1) 設(shè) p:2是素數(shù),q:2
8、是合數(shù), r: 是無理數(shù),s:4是素數(shù) (2) 推理的形式結(jié)構(gòu) 前提:pq, pr, rs 結(jié)論:sq,15,附加前提證明法實例,(3) 證明 s 附加前提引入 pr 前提引入 rs 前提引入 ps 假言三段論 p 拒取式 pq 前提引入 q 析取三段論,16,歸謬法(反證法),歸謬法 (反證法) 欲證 前提:A1, A2, , Ak 結(jié)論:B 做法 在前提中加入B,推出矛盾. 理由 A1A2AkB (A1A2Ak)B (A1A2AkB) (A1A2AkB)0 A1A2AkB0,17,歸謬法實例,例4 前提:(pq)r, rs, s, p 結(jié)論:q 證明 用歸繆法 q 結(jié)論否定引入 rs 前提
9、引入 s 前提引入 r 拒取式 (pq)r 前提引入 (pq) 析取三段論 pq 置換 p 析取三段論 p 前提引入 pp 合取,18,第三章 習題課,主要內(nèi)容 推理的形式結(jié)構(gòu) 判斷推理是否正確的方法 真值表法 等值演算法 主析取范式法 推理定律 自然推理系統(tǒng)P 構(gòu)造推理證明的方法 直接證明法 附加前提證明法 歸謬法(反證法),19,基本要求,理解并記住推理形式結(jié)構(gòu)的兩種形式: 1. (A1A2Ak)B 2. 前提:A1, A2, , Ak 結(jié)論:B 熟練掌握判斷推理是否正確的不同方法(如真值表法、等值演算法、主析取范式法等) 牢記 P 系統(tǒng)中各條推理規(guī)則 熟練掌握構(gòu)造證明的直接證明法、附加前
10、提證明法和歸謬 法 會解決實際中的簡單推理問題,20,練習1:判斷推理是否正確,1. 判斷下面推理是否正確: (1) 前提:pq, q 結(jié)論:p,解 推理的形式結(jié)構(gòu):,(pq)qp,方法一:等值演算法 (pq)qp (pq)q)p (pq)qp (pq)(qq)p pq,易知10是成假賦值,不是重言式,所以推理不正確.,21,練習1解答,方法二:主析取范式法, (pq)qp (pq)q)p pq M2 m0m1m3 未含m2, 不是重言式, 推理不正確.,22,練習1解答,方法三 真值表法 不是重言式, 推理不正確,方法四 直接觀察出10是成假賦值,23,練習1解答,用等值演算法 (qr)(pr)(qp) (qr)(pr)(qp) (qr)(pr)(qp) (qp)(qr)(rp)(qp) (qp)(qr)(rp)(qp) 1 推理正確,(2) 前提:qr, pr 結(jié)論:qp,解 推理的形式結(jié)構(gòu):,(qr)(pr)(qp),24,練習2:構(gòu)造證明,2. 在系統(tǒng)P中構(gòu)造下面推理的證明: 如果今天是周六,我們就到頤和園或圓明園玩. 如果頤和 園游人太多,就不去頤和園. 今天是周六,并且頤和園游 人太多. 所以, 我們?nèi)A明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煉油分離工程課程設(shè)計
- 2024年有償借款合同范本:個人消費分期貸款6篇
- 小型策劃方案
- 改進方案匯編四篇
- 新時代糧食安全演講稿(17篇)
- 水果冷庫課程設(shè)計
- 幼兒園新年游戲課程設(shè)計
- 招商方案模板九篇
- 建設(shè)工程消防質(zhì)量承諾書范文(7篇)
- 2024年度企業(yè)信用評級擔保合同3篇
- 幼兒園課件:《認識國旗》
- 《高等教育學》知識點梳理(附答案)
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院醫(yī)療質(zhì)量管理參考模板
- 張大千-ppt資料
- 內(nèi)螺紋銅管成型技術(shù)與工藝(綜述)
- 航道整治課程設(shè)計--
- 2022逆轉(zhuǎn)和消退動脈粥樣硬化斑塊的現(xiàn)實:來自IVUS試驗的證據(jù)(全文)
- 熱力試驗測點安裝及布置規(guī)范
- 群塔作業(yè)方案(圖文并茂,十分詳細)
- 八灘鎮(zhèn)第二中心小學信訪維穩(wěn)工作臺賬
- 布洛芬工藝規(guī)程
評論
0/150
提交評論