用導(dǎo)數(shù)求切線方程的四種類型_第1頁
用導(dǎo)數(shù)求切線方程的四種類型_第2頁
用導(dǎo)數(shù)求切線方程的四種類型_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、用導(dǎo)數(shù)求切線方程的四種類型求曲線的切線方程是導(dǎo)數(shù)的重要應(yīng)用之一,用導(dǎo)數(shù)求切線方程的關(guān)鍵在于求出切點及斜率,其求法為:設(shè)是曲線上的一點,則以的切點的切線方程為:若曲線在點的切線平行于軸(即導(dǎo)數(shù)不存在)時,由切線定義知,切線方程為下面例析四種常見的類型及解法類型一:已知切點,求曲線的切線方程此類題較為簡單,只須求出曲線的導(dǎo)數(shù),并代入點斜式方程即可例1曲線在點處的切線方程為() 解:由則在點處斜率,故所求的切線方程為,即,因而選類型二:已知斜率,求曲線的切線方程此類題可利用斜率求出切點,再用點斜式方程加以解決例2與直線的平行的拋物線的切線方程是() 解:設(shè)為切點,則切點的斜率為由此得到切點故切線方程

2、為,即,故選評注:此題所給的曲線是拋物線,故也可利用法加以解決,即設(shè)切線方程為,代入,得,又因為,得,故選類型三:已知過曲線上一點,求切線方程過曲線上一點的切線,該點未必是切點,故應(yīng)先設(shè)切點,再求切點,即用待定切點法例3 求過曲線上的點的切線方程解:設(shè)想為切點,則切線的斜率為切線方程為又知切線過點,把它代入上述方程,得解得,或故所求切線方程為,或,即,或評注:可以發(fā)現(xiàn)直線并不以為切點,實際上是經(jīng)過了點且以為切點的直線這說明過曲線上一點的切線,該點未必是切點,解決此類問題可用待定切點法類型四:已知過曲線外一點,求切線方程此類題可先設(shè)切點,再求切點,即用待定切點法來求解例4求過點且與曲線相切的直線方程解:設(shè)為切點,則切線的斜率為切線方程為,即又已知切線過點,把它代入上述方程,得解得,即評注:點實際上是曲線外的一點,但在解答過程中卻無需判斷它的確切位置,充分反映出待定切點法的高效性例5已知函數(shù),過點作曲線的切線,求此切線方程解:曲線方程為,點不在曲線上設(shè)切點為,則點的坐標(biāo)滿足因,故切線的方程為點在切線上,則有化簡得,解得所以,切點為,切線方程為評注:此類題的解題思路是,先判斷點A是否在曲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論