版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、PowerElectronicsChap. 13DC Motor DrivesChap.13DC Motor DrivesOutlinesu Introductionu Equivalent Circuit of DC Motorsu Permanent-magnet DC Motorsu DC Motors with A Separately Excited Field Windingu DC Servo Drivesu Adjustable-sped DC Drivesu SummaryChap.13DC Motor DrivesIntroduction In the past few y
2、ears, the use of ac motor drivesinthespeedandpositioncontrolapplicationsisincreasingduetotheirsimplestructure, efficiency,low andmaintenance,highreliability,highhigh power density.Maintenance costHighLowACMotorInitial costLowHighDCMotorChap.13DC Motor DrivesEquivalent Circuit of DC MotorsPermanent-
3、magnetestablish the field fluxField Windingf= k f I ffArmature Windinghandles the electric powerRotorDCMotorStatorChap.13DC Motor DrivesEquivalent Circuit of DC MotorsWith field winding ff= k f I fPermanent-magnetChap.13DC Motor DrivesEquivalent Circuit of DC Motors The electromagnetic torque is pro
4、duced by the interaction between the field flux and the armature current.= ktf f iaTem A back-emf is produced by the rotation of armature conductors at a speed in the presence of a field flux.ea= kef f wmElectrical PowerPe= eaia= kef f wmiaMechanical PowerPm= wmTem= ktf f wmiaP= P = kNmV In steady s
5、tate,k A Wb Wbrad/s emteChap.13DC Motor DrivesEquivalent Circuit of DC MotorsdiaV= e+ R i+ LtaaaadtJ= J dwm+ Bw+ TT(t)emmWLdtTotal equivalent JTotal equivalent BEquivalent load torqueTWLinertiadampingChap.13DC Motor DrivesEquivalent Circuitof DC Motors= ktf f iaea= kef f wmTemGeneratorGenerator High
6、 performance drives may operate in all four quadrantsChap.13DC Motor DrivesPermanent-magnet DC Motors Permanent magnets on the stator produce a constant field fluxff Electromagnetic torque.= ktf f= kT IaTemkT Back-emfEa= kEwm= kef fkE Voltage equationVt= Ea + Ra IaEquivalent circuitChap.12Introducti
7、on to Motor DrivesPermanent-magnet DC Motors The speed of a load with arbitrary torque can be controlled bycontrolling Vin a permanent-magnet dc motor with a constant f f.t1- Ra Limitation: the maximum speed is limited to the rated speed.w=(VT)mtemkkETTorque-speed characteristicContinuous torque-spe
8、ed capabilityChap.13DC Motor DrivesDC Motors with A Separately Excited Field Winding The limitations of permanent-magnet DC motors can beovercome by using a separately excited field winding to adjust f f .= VfIfRfRa1w=(V-T)mk ftk femeftfEquivalent circuitChap.13DC Motor DrivesDC Motors with A Separa
9、tely Excited Field WindingConstant torque controlConstant power control= ktf f iaTemea= kef f wm In the field weakening region, the speed may be exceeded by 50-100% of its rated value, depending on the motor design.Chap.13DC Motor DrivesDC Servo Drives If it were not for the disadvantages of having
10、a commutator and brushes, the dc motor would be ideally suited for servodrives, because the instantaneous torquecan be controlled= ktf f ialinearly by controlling the armature current.Tem13.5.1 Transfer function modelThree-loop control of dc servo drivesChap.13DC Motor DrivesDC Servo Drives13.5.1 Tr
11、ansfer function modeld(Di)Dv= De+ R Di+ Ltaaaaadt Equations for analyzing small-signal dynamic performance= kDwDeaEmDTem= kT Dia+ J d (Dwm )= DT+ BDwDTemWLmdtVt (s) = Ea (s) + (Ra + sLa )Ia (s)Ea (s) = kEwm (s)Tem (s) = kT Ia (s)Tem (s) = TWL (s) + (B + sJ )wm (s)wm (s) = sqm (s) Take the Laplace tr
12、ansformChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelVt (s) = Ea (s) + (Ra + sLa )Ia (s)Ea (s) = kEwm (s) Take the Laplace transformTem (s) = kT Ia (s)Tem (s) = TWL (s) + (B + sJ )wm (s)wm (s) = sqm (s)Chap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelInputs The
13、 superposition principle yields,Ra + sLakTw(s) =V (s) -T(s)m(R+ sL )(sJ + B) + kkt(R+ sL )(sJ + B) + kWLkaaTEaaTEChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelRa + sLakTw(s) =V (s) -T(s)mtWL(R+ sL )(sJ + B) + k+ sL )(sJ + B) + kk(RkaaTEaaTE Two closed-loop transfer functionsG (s
14、) = wm (s)kT=1(R+ sL )(sJ + B) + kkV (s)taaTETWL ( s)=0G (s) = wm (s)Ra + sLa=2(R+ sL )(sJ + B) + kkT(s)WLaaTEVt (s)=0Chap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function model Neglect the friction term by setting B = 0 and consider the motor without load J = Jm,kT1G (s) =1L JR J(R+ sL) + k
15、ksJ am + s am +1)2k(smaaTEEkkkkTETE Define the following constant,=La= Ra JmElectrical time constantMechanical time ttmconstantekkRTEa Using time constants yields,G (s) = wm (s) =1(s2tt+ st1+1)V (s)ktEmemChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function model In general, tmte . To replac
16、e st m1by s(t m +te ) ,1G (s) = wm (s) =k(s2tt+ stk(st+1)(st1+1)+1)V (s)tEmemEme11w(s)mk(st+1)Em1V (s)(st+1)teChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function model In general, tmte . To replace st m1by s(t m +te ) ,1G (s) = wm (s) =k(s2tt+ stk(st+1)(st1+1)+1)V (s)tEmemEme111w(s)V (s)mk
17、(st+1) (stt+1)EmeChap.13DC Motor DrivesDC Servo Drives13.5.1 Transfer function modelt e The electrical time constantdetermines how quickly thearmature current builds up in response to a step change DVt in the terminal voltage, where the rotor speed is assumed to be constant.d(Di)Dv= De+ R Di+ Ltaaaa
18、adtDea = kE DwmChap.13DC Motor DrivesDC Servo Drives The mechanical time constant tmdetermines how quicklythe speed builds up in response to a step change DVtin the terminal voltage, provided that the electrical time constant t e is assumed to be negligible and the armature current can change instan
19、taneously.Vt (s)w(s)mk(st+1)EmDvtDw(1- e-t tm )(t)mkEChap.13DC Motor DrivesDC Servo Drives13.5.2 Power electronic converterA power electronic converter supplying a dc motor should have the following capabilities:u The converter should allow both its output voltage and current to reverse in order to
20、realize four-quadrant operation.u The converter should be able to operate in a current- controlled mode by holding the current at its maximum acceptable value during fast acceleration and deceleration.u For accurate control of position, the average voltage output of the converter should vary linearl
21、y with its control input, independent of the load on the motor.u The converter output should respond as quickly as possible to its control input.Chap.13DC Motor DrivesDC Servo Drives13.5.2 Power electronic converter A full-bridge switch-mode dc-dc converter produces a four- quadrant controllable dc
22、output for dc motor drives.= kcVcontrolVtChap.13DC Motor DrivesDC Servo Drives13.5.3 Ripple in the armature current The peak-to-peak ripple in the armature current caused by the switch-mode dc-dc converter impacts on the torque pulsations and heating of the motor.vt (t) = Vt + vr (t)Ripple component
23、s v (t), i (t)tri(t) = I+ i(t)aar The armature circuit equation:dir (t)V+ v (t) = E+ R I+ i (t) + Ltraaaradtdir (t)V= E+ R Iv (t) = R i (t) + Ltaaara radtChap.13DC Motor DrivesDC Servo Drives The ripple current is primarily determined by the armature inductance.dir (t)v(t)Lradt Theripple voltage is
24、maximum when the average outputvoltage is zero and all switches operate at equal duty ratiosPWM bipolar voltage switchingPWM unipolar voltage switchingVdVd(DI=(DI=)p-pmaxp-pmax2Lf8LfasasChap.13DC Motor DrivesDC Servo Drives13.5.4 Control of servo drives The current-limiting circuit operates only whe
25、n the drivecurrent tries to exceed an acceptable limit fast accelerations and decelerations.duringIa,maxNo internal current control loopChap.13DC Motor DrivesDC Servo Drives13.5.4 Control of servo drives To improve the dynamic response in high-performance servo drives, and internal current loop is u
26、sed to control the armature current and torque directly.i* Iaa,maxWith internal current control loopChap.13DC Motor DrivesDC Servo Drives13.5.5 Nonlinearity due to blanking time The blanking time of PWM dc-dc converters causes output voltage errors.Chap.13DC Motor DrivesDC Servo Drives13.5.5 Nonline
27、arity due to blanking time The blanking time of PWM dc-dc converters causes output voltage errors. The effects due to blanking time on the drive performance can be minimized by using the current-controlled mode converters.Chap.13DC Motor DrivesAdjustable-speed DC Drives Unlike servo drives, the resp
28、onse time to speed and torque commands is not as critical in adjustable-speed drives.13.6.1 Switch-mode dc-dc converter= ktf f iaea= kef f wmTem If a four-quadrant operation is needed and a switch-mode converter is utilized, then the full-bridge converter is used.Chap.13DC Motor DrivesAdjustable-spe
29、ed DC Drives13.6.1 Switch-mode dc-dc converter If the speed does not have to reverse but braking is needed, then the two-quadrant converter can be used.= ktf f iaea= kef f wmTemMotoringBrakingTwo-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.1 Switch-mode dc-dc converter If
30、the speed does not have to reverse but braking is needed, then the two-quadrant converter can be used.= ktf f iaea= kef f wmTemMotoringBrakingTwo-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.1 Switch-mode dc-dc converter If the speed does not have to reverse but braking is
31、needed, then the two-quadrant converter can be used.= ktf f iaea= kef f wmTemMotoringBrakingTwo-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.1 Switch-mode dc-dc converter For a single-quadrant operation where the speed remains unidirectional and braking is not required, the
32、 step-down converter can be used.Single-quadrant operationChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converter In large power adjustable-speed dc drives, it may be economical to utilize a line-frequency controlled converter (phase-controlled converter).Chap.13DC
33、 Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converter A disadvantage of the line-frequency converters is the longer response to the speed control signals (due to fire delay angle), compared to high frequency switch-mode dc- dc converters.Chap.13DC Motor DrivesAdjustable-s
34、peed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersOne phase-contro
35、lled converter together with two pairs of contactors.Chap.13DC Motor DrivesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersOne phase-controlled converter together with two pairs of contactors.Chap.13DC Motor Dri
36、vesAdjustable-speed DC Drives13.6.2 Line-frequency controlled converterTwo back-to-back connected thyristorFour-quadrant operationconvertersOne phase-controlled converter together with two pairs of contactors.Chap.13DC Motor DrivesAdjustable-speed DC Drives13.6.4 Control of adjustable-speed drives A
37、 ddtlimiter allows the speed command to change slowly,thus preventing the rotor current from exceeding its rating.Open-loop speed controlChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.5 Field weakening in adjustable- speed dc motor drivesThe operation higher than the rated speed of the dc moto
38、rcan be realized by reducing the field flux f f.A line-frequencycontrolled converter is normally used to control the field winding.I fthroughChap.13DC Motor DrivesAdjustable-speed DC Drives13.6.6 Power factor of the line current Both the diode rectifier and the phase-controlled rectifiers draw line
39、currents that consist of large harmonics. These harmonics cause the power factor of operation to be poor.Drive capability of dc motorsLine-frequency converter driveFor constant load torque, thisline frequency converter results in a very poor displacement angle at low speeds.Chap.13DC Motor DrivesAdjustable-speed DC Drives13.6.6 Power factor of the line current Both the diode rectifier and the phase-controlled rectifiers draw line currents that consist of large harmonics. These harmonics cause the power factor o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《黑神話:悟空》2025高中地理練習(xí)題含答案
- 餐飲戰(zhàn)略合作協(xié)議書合同模板
- 采購管材管件合同范文
- 保證合同協(xié)議書范本
- 智慧養(yǎng)老方案課件
- 山東省煙臺市蓬萊區(qū)(五四制)2024-2025學(xué)年八年級上學(xué)期期中考試英語試卷(含解析)
- 河北省邯鄲市臨漳縣2024-2025學(xué)年七年級上學(xué)期11月期中生物學(xué)試卷(含答案)
- 《紡織纖維鑒別試驗方法 第3部分:顯微鏡法》
- 高原常見病防治課件
- 肺部解剖及肺循環(huán)相關(guān)病變課件
- 兩票管理指南
- 工程建設(shè)標準英文翻譯細則
- 人教版二年級上冊《道德與法治》全冊教學(xué)課件+單元復(fù)習(xí)課件PPT
- 提高護士壓力性損傷評估正確率品管圈培訓(xùn)課件
- 2023年江蘇省五年制專轉(zhuǎn)本英語統(tǒng)考真題(試卷+答案)
- 智能云停車系統(tǒng)委托開發(fā)合同
- 抖音旅行社商家境外游直播活動策劃方案旅行社抖音直播教程
- 大宇迷你破壁機說明書
- 金屬非金屬礦山礦山法律法規(guī)
- 王慧文清華大學(xué)《互聯(lián)網(wǎng)產(chǎn)品管理課》
- Unit3 Lesson 13 At School (教學(xué)設(shè)計)-2022-2023學(xué)年英語四年級上冊-冀教版(三起)
評論
0/150
提交評論