




已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第 1 頁 共 10 頁 干摩擦的非線性動力學(xué) Franz-Josef Elmer 瑞士巴塞爾,巴塞爾大學(xué),物理學(xué)院 CH-4056 1996 年 11 月 5日收到來稿, 1997 年 5 月 21 日決定發(fā)表 摘要 研究一個有牽引力的彈簧 木塊系統(tǒng)以一個恒定的速度在一個表面上運(yùn)動所受到的干摩擦動力學(xué)。一個很普遍且符合摩擦學(xué)現(xiàn)象規(guī)律的動力學(xué)推理正在研究中(此規(guī)律為:靜止時受靜摩擦力影響,運(yùn)動速度受動摩擦力影響)。共有三種可能發(fā)生的運(yùn)動 :粘 滑運(yùn)動、連續(xù)滑動、以及無粘性的振動?,F(xiàn)在將要闡述地方以及全球的一些令人矚目的人所提出的分歧觀點(diǎn)以及他們的觀點(diǎn)極 其相似的不穩(wěn)定觀點(diǎn)。 庫侖關(guān)于干摩擦的 l定律被應(yīng)用了 200 多年。他規(guī)定摩擦力等于由物體本身材料所決定的摩擦系數(shù)與正壓力的乘積。靜摩擦系數(shù)(靜摩擦力是使物體由靜止開始滑動的力)通常等于或大于動摩擦系數(shù)(動摩擦力是使物體以一個恒速度運(yùn)動的力)。 一個機(jī)械系統(tǒng)受到的干摩擦力是非線性的,因?yàn)閹靵龆砂褎幽Σ亮挽o摩擦力區(qū)分開了。如果動摩擦系數(shù)小于靜摩擦系數(shù),在一個滑動并且粘住和滑動轉(zhuǎn)化十分規(guī)則就如 l所說的表面上,粘 滑運(yùn)動就會發(fā)生。這種急變的運(yùn)動發(fā)生在日常生活中的每一天,例如開關(guān)門和拉小提琴。 即使庫侖定律 是很簡單并且很容易確定的(工程上一些計算都依據(jù)這些公式),它關(guān)于靜摩擦產(chǎn)生的原因要求并不嚴(yán)格,因?yàn)殪o摩擦只是一個過程,它的作用不會涉及到平衡。因此不必為庫侖定律經(jīng)常應(yīng)用于實(shí)驗(yàn)這個事實(shí)背離而讓我們感到驚訝。典型的背離例子是下面所列出的:( i)靜摩擦力是變化的而且是隨著靜止時間的延續(xù)而逐漸增加的 2, 3,即兩個相接觸的滑行表面而沒有發(fā)生相對運(yùn)動。( ii)動摩擦力決定于滑動速度;對于一個很大的速度,它可以近似地看作是線性地增加,這個速度就像是在 粘性摩擦力場那樣。在達(dá)到很大速度之前,摩擦力首先減小,直到減小到最小值,然后再繼續(xù)增大 3, 4。在有潤滑油的臨界條件下(即是在滑動的表面有極少的起潤滑作用的單分子層存在)摩擦力將以一個很小的速度再次減?。ㄒ妶D 1) 5, 6。動摩擦系數(shù)作為影響滑動速度的因素,至少有一個極值。動摩擦力可能大于靜摩擦力,但是在物體將要 第 2 頁 共 10 頁 滑動的瞬間,動摩擦力始終是小于或等于靜摩擦力的。 本文的目的是針對非線性動力學(xué)中在某一個程度上狹隘的諸如上面提到的干摩擦定律提出一個自由的論點(diǎn)。本文將拋開在著作 1,3,4,6-9中已提出的明確 的定律。關(guān)于摩擦力的現(xiàn)象學(xué)的定律只是在肉眼所見的程度內(nèi),這就意味著用顯微鏡可見的精微的程度將遠(yuǎn)遠(yuǎn)超過肉眼可見的程度。在本文的結(jié)束語中將要給出一個為什么這種假設(shè)總不是有效的簡單論點(diǎn)。要去揭示這種宏觀現(xiàn)象的無根據(jù)性,因此去了解這種時空分離的假設(shè)下的完整的動力學(xué)知識是很重要的。 圖 1 (a)圖為典型的速度影響的動摩擦 定律的示意性草圖 (b)圖為有潤滑油的臨界條件下的系統(tǒng) 圖 2 干摩擦諧波振蕩器 第 3 頁 共 10 頁 對于不同的干摩擦定律有兩個很重要的眾所周知地前提。( i) 摩擦系數(shù)只能在儀器內(nèi)部測量(比如表面力測量儀 10或摩擦力顯微鏡 11)。下面我們將會發(fā)現(xiàn)系統(tǒng)的運(yùn)動狀態(tài)主要受摩擦力和儀器影響。例如粘 滑運(yùn)動狀態(tài)就比變化速度作用下的狀態(tài)難于直接得出動摩擦系數(shù)。因此,測量儀器的影響是不能忽略掉的。( ii)在粒狀材料中干摩擦也是一個重要的物理量 12。一些相互作用的雙尺是否合力作用的展開話題將久遠(yuǎn)地影響庫侖動力學(xué)定律的修改。 在兩個滑動表面的機(jī)械環(huán)境下(比如儀器)肉眼可見的自由程度很大。最重要的一個是側(cè)面的。這里僅討論在單一程度 范圍內(nèi)描述的具體系統(tǒng)。圖 2 明確地說明了儀器的構(gòu)成。諧波振蕩器是這樣組成的:一個木塊(質(zhì)量為 M)由一個彈簧(倔強(qiáng)系數(shù)為 k)與一個固定施力系統(tǒng)連接(見圖 2)。木塊與一個以恒定速度 v0 滑動的表面接觸。木塊和滑動表面之間的交互作用是靜止時的靜摩擦力 )(stickS tF和運(yùn)動時的動摩擦力 FK(v)的合力。在列寫運(yùn)動狀態(tài)方程時,我們必須區(qū)分木塊是處于粘住狀態(tài)還是滑動狀態(tài)。如果它處于粘住狀態(tài),它的位移 x將隨時間線性地增加,直到彈簧的彈力 )(kx 大于靜摩擦力SF。 因此 kttFxifvxrS /)(0 (1a) 當(dāng) ttr 時木塊在前一次滑動后再一次回到原狀態(tài)。 如果木塊滑動,運(yùn)動方程為 )()( 00 xvFxvs i g nkxxM K ( 1b) 如果 kFxorvxS /)0(0 , sign(x)表示 x的坐標(biāo)。 我們的研究將以庫侖定律關(guān)于持續(xù)靜和動摩 擦的研究為基礎(chǔ)。當(dāng)0vx時,系統(tǒng)的狀態(tài)就像一個干燥的諧波振蕩器在平衡位置附近以 kFK / 這么大的位移振蕩。因而,有很多解決振動的方法。在下面我們將要看到一些在速度影響下的動摩擦情況下依然存在的方法。木塊的平衡位置在 k/)v(0KFx ,它被稱為連續(xù)變化狀態(tài)。 第 4 頁 共 10 頁 每一個具有能夠使振動的最大速度大于 v0 的初始狀態(tài)都將導(dǎo)致在一個有限時間內(nèi)實(shí)現(xiàn)粘 滑狀態(tài)的轉(zhuǎn)變。而滑動狀態(tài)是不受初始狀態(tài)影響的,將以0,/ vxkFx S 開始運(yùn)動。然而,粘 滑系統(tǒng)定義了一個具有說服力的相位周期變化的規(guī)律。這和系統(tǒng)的狀態(tài)像干燥的諧波振蕩器的系統(tǒng)狀態(tài)并不是矛盾的。原因是:如果它在相位空間采樣,相位的變化范圍已被約定在了一條直線上如 (la)式所示。粘 滑狀態(tài)要求動摩擦力KF必須小于靜摩擦力。通常粘住狀態(tài)時間 )/()(20kvFFt KSs tic k 遠(yuǎn)遠(yuǎn)大于滑動狀態(tài)時間 kMkMvFFt KSs l i p /)()a r c ta n (2 2/110 。粘 滑狀態(tài)的最大振幅(即 )(max txt )函數(shù)是一個關(guān)于 v0的不規(guī)律變化的函數(shù),其中 v0是由 kFS /決定的,而且初始狀態(tài) 00 v。這個表達(dá)式對于一個速度影響的動摩擦同樣適用。 未經(jīng)修改的庫侖定律致使以任何一個滑動速度 v0 的持續(xù)變化狀態(tài)與粘 滑狀態(tài)是同時存在的。在一個速度影響的動摩擦系統(tǒng)的一般范圍內(nèi),這種雙穩(wěn)態(tài)都將存在,但是速度 v0要有一個嚴(yán)格的限制范圍。特別是當(dāng)在粘 -滑運(yùn)動狀態(tài)出現(xiàn)臨界速度cv時。比如日常的一個現(xiàn)象: 快速地開關(guān)門就可以消除它的吱吱的聲音。 我們?yōu)榱烁康厝ソ鉀Q線性運(yùn)動的 FK關(guān)于 v 的狀態(tài)方程 0,)(0 vFvF KK。 方程( lb)將變形為能夠容易解決的不干燥諧波振蕩器的方程。用一個具有權(quán)威性的持續(xù)變化狀態(tài)代替擺動變化的解決辦法。如果軌跡0)0(,/)0( vxkFx S ,t0 時不再粘住,粘 滑狀態(tài)將會消失。臨界速度cvv 0由兩個方程00 )(,/( vtxkFtx s lipKs lip 得出。這樣將推出兩個關(guān)于slipt和cv非線性數(shù)學(xué)方程。當(dāng) Mk 時,可以近似認(rèn)為 )(2 0 kMFFv KSc ( 2) 臨界速度cv在粘 滑狀態(tài)的性質(zhì)探討中是很重要的一個物理量,因?yàn)閺乃臏y量方法中我們可以間接地知道有關(guān)機(jī)械裝置的干摩擦的知識(見論點(diǎn) 6)。 接下來討論變化狀態(tài)的)(vKF,正如圖 1 的例子 一樣。假設(shè)靜摩擦力SF始終是存在 第 5 頁 共 10 頁 的。0v為任何值時連續(xù)滑動狀態(tài)都是存在的,但它僅僅在 0/)(00 dvvdFF KK時是穩(wěn)定的。在 )(vFK達(dá)到一個極值時這種穩(wěn)定狀態(tài)改變并且 Hopf 分歧出現(xiàn)。在接近極值并與連續(xù)滑動狀態(tài)有很小的背離時, .)()()( /0 ccetAk vFtx tMkiK ( 3) 由振幅決定(標(biāo)準(zhǔn)形式) 13 AAMkMFiMFkAMFdtdA KKK 222 )(4(2 ( 4) 如果關(guān)于動摩擦的極值的第三種說法是絕對的,而 分歧是超臨界的,另外如上面所提到的眾所周知的觀點(diǎn),另一種觀點(diǎn)產(chǎn)生了。這里稱為擺動滑動狀態(tài)。它是一個最大的速度總是小于 v0 的這個有限的循環(huán)周期。這樣木塊決不會粘住。它的頻率由左手邊 (1b)的諧波振蕩器粗略地給出。動摩擦的第二種說法對于非線性頻率去諧是有效的。值得一提的是粘 滑振蕩器的頻率通常是遠(yuǎn)遠(yuǎn)小于擺動變化狀態(tài)的。這種擺動狀態(tài)與雷利的周期方程 130)( 3 uuuu 十分相似,事實(shí)上,雷利方程是( 1b)方程的一個特例。因?yàn)閯幽Σ粒瑤追N穩(wěn)定和不穩(wěn)定周期循環(huán)可能存在。通過改變 v0,產(chǎn)生和消除相互作用來承受分歧點(diǎn)。 應(yīng)該強(qiáng)調(diào)一點(diǎn)由( 4)描述的 Hopf的 分歧觀點(diǎn)和 Heslot et al 3評述的 Hopf的 分歧觀點(diǎn)是沒有關(guān)系的 。后者的評述在一次政體(稱為爬行的政體)上提出,( 1a)是不適用的(同下面關(guān)于干摩擦定律有效性一致)。 一個擺動變化狀態(tài)只有在它的最大速度小于由粘性狀態(tài)( 1a)決定的滑動速度 v0時才存在。擺動變化狀態(tài)和粘住狀態(tài)是怎么樣相互作用影響 粘 滑運(yùn)動?為了回答這個問題,我們相反地計算點(diǎn)的軌跡 ),/)0(lim00 vkF K與 (lb)一致。三種具有說服力的不同的軌跡是可能存在的。 ( 1) 利用相反軌道法采樣粘住狀態(tài)。他們一起定義了一個有界限的導(dǎo)致非線性軌道的初始狀態(tài)的裝置。這套裝置的界限專門稱為粘 滑狀態(tài)邊界;它是一個 第 6 頁 共 10 頁 不可能存在的軌道,但是它把粘 滑振動和非粘 滑狀態(tài)這兩個難以分開的狀態(tài)區(qū)分開了。 ( 2) 相反軌道法向內(nèi)部盤旋接近于一個非穩(wěn)定狀態(tài)或非連續(xù)滑動狀態(tài)。此外所有的初始狀態(tài)除這些抵制狀態(tài)外都有一個固定的粘 滑周期。 ( 3) 這種相反軌道法向外盤旋 趨向于無窮,粘 滑狀態(tài)是不會發(fā)生的。 兩種局部分歧是由可能存在的:如果相反軌跡改變了從第一種情況到第三種情況的固定粘 滑循環(huán),使粘 滑界限消失。從第一種情況到底二種情況的這種粘 滑界限也被非穩(wěn)定連續(xù)狀態(tài)或擺動滑動狀態(tài)或是它以消失變?yōu)榉€(wěn)定連續(xù)狀態(tài)或擺動滑動狀態(tài)。從第二種情況到第三種情況的轉(zhuǎn)變是不可能發(fā)生的。見圖 3, 對于 )(vFK 的一個特殊值,將有兩種分歧觀點(diǎn)產(chǎn)生。第一個是在 v0 0.059,0.082,0.966。第二個是在 v0 0.162,0.785。這個例子說明了不 斷增加 v0,粘 滑運(yùn)動可能消失也可能再產(chǎn)生。 此外著名的雙穩(wěn)態(tài)的粘 滑運(yùn)動和連續(xù)滑動 3,連續(xù)滑動狀態(tài),幾種擺動滑動狀態(tài),和粘 滑振蕩器的穩(wěn)定性都是有可能的(見圖 3)。最后所有的觀點(diǎn)都認(rèn)為除了連續(xù)滑動狀態(tài),非常大的滑動速度將會消失因?yàn)閯幽Σ亮⒁浞值赜绊戇@個很大的速度。 超強(qiáng)的過阻尼極限( i.e. kMdvvdFk /)(適用于任何 v除了在極值里微小的距離)導(dǎo)致了時間的分離。對于一個相位圖上的任一點(diǎn)( ),( xx ,并且0vx的狀態(tài)將快速地向點(diǎn) ),( vx 變化, v 由 0)(),(00 vvFvvFkx kk。在曲線 )(0 xvFkx k 上的點(diǎn),當(dāng)0kF 時時不穩(wěn)定的。他們分離了不同的 v 的求解辦法。駐留系統(tǒng)太久的快速運(yùn)動之后將要沿著曲線 )(0 xvFkx k 變化。方向由 x 的符號決定。它也將到達(dá)穩(wěn)定連續(xù)滑動狀態(tài),或者是,接近一個極限值 KF ,它將突然地向曲線分歧轉(zhuǎn)變或者是向粘住狀態(tài)。如圖 l(b)所示動摩擦定律在兩個極值之間的 v0,出現(xiàn)振動滑動狀態(tài)。這是一個不嚴(yán)密的振動可能難以區(qū)別粘 滑擺動狀態(tài)。如圖 l(a)中單一的最小速度為mvv的摩擦定律的情形下我們可以得到mvv 07的粘 滑狀態(tài)。在超強(qiáng)過阻尼界限任何雙穩(wěn)定狀態(tài)都將消 第 7 頁 共 10 頁 失,除了接近 )(vFK極值。 Yoshizawa 和 Israelachvili 14的實(shí)驗(yàn)是一致的,他們假設(shè)系 統(tǒng)處于超強(qiáng)過阻尼界限的摩擦定律如圖 1(a)7所示。 為了討論依賴靜止時間的靜摩擦力影響下的粘 滑狀態(tài),我們建立了粘 滑坐標(biāo)系圖 3 典型的分歧觀點(diǎn)精確的動摩擦力 )(vFK 見圖 l(b)。接下來的作用力由下式?jīng)Q定 : 2/)()()()( 221221 vvvvvvvF k ,其中05.0,2.0,1.0,3 21 vv 。由運(yùn)動( l) 的方程積分就可以得到結(jié)果。其他的參數(shù)如 1,40,1 kMFs。各段曲線表示了穩(wěn)定和不穩(wěn)定連續(xù)滑動狀態(tài)( CS),擺動滑動狀態(tài)( OS),或者是粘 滑運(yùn)動( SS)。一系列曲線說明 了粘 滑分界線。 第 8 頁 共 10 頁 )(1 nn xTx , nx 是開始滑動的位置。對于恒定不變的靜摩擦力在圖中規(guī)定為kFxT S /)( 。僅僅在滑動狀態(tài)向靜止?fàn)顟B(tài)轉(zhuǎn)變的時候位移定義為 snx 。它是 nx 的函數(shù),即 )(nsn xgx ,函數(shù) g通常是一個單調(diào)遞減的函數(shù)。靜止時間 sticknt是這個函數(shù)的最小實(shí)根 s tic knsns tic knS tvxktF 0)( ( 5) 這就定義了一個函數(shù) )( nsstickn xht 而且在 0SF時是單調(diào)遞減函數(shù)。這樣粘 滑圖可以這樣定義 kxghFxTS /)()( 。當(dāng)圖只有一個點(diǎn)時,粘滑運(yùn)動就是存在的。 當(dāng) KF =常量 = )0(SF時,粘滑運(yùn)動消失 )/()0()(2s u p00 ktFtFvv SStc 。對于非凸起函數(shù) FS(t), 在粘 滑圖中靜止時間導(dǎo)致鞍狀節(jié)點(diǎn)穩(wěn)定和不穩(wěn)定的固定點(diǎn)在非零值處出現(xiàn)了上確限。與凸起的 FS(t)8的情形相比在cvv 0時粘 滑運(yùn)動有一個固定振幅。因?yàn)?T是一個單調(diào)遞增的函數(shù),界限循環(huán)或平均混亂都是沒有可能的。 如果滑動 靜止轉(zhuǎn)變不發(fā)生在 x 變?yōu)榕c v0(因?yàn)?kFxSns /)0()相等的第一次。在這種情況下將得到一個由于非單調(diào)變化的 g 導(dǎo)致的非單調(diào)變化的 T。如果 )0(/)(SS FF 變得相當(dāng)大這樣過于發(fā)射是可能的。例如,對于一個持續(xù)變化的動摩擦力如果)0(/)0(1)0(/)( FFFF KSS 過發(fā)射將要發(fā)生。對于實(shí)實(shí)在在的系統(tǒng)這種狀況是不可能發(fā)生的。注意混亂的可能性和對于不變的 FS的運(yùn)動 (l)的方程不可能表現(xiàn)出混亂狀態(tài)的事實(shí)是 不矛盾的。但是由于 FS的延遲使 (l)變?yōu)榱艘环N微分延遲方程。 利用干摩擦的現(xiàn)象學(xué)意味著我們把干摩擦看作是一個機(jī)械電路的元素并帶有非線性的速度量和力的性質(zhì),比如,說,在一個電路里的二極管。只要在肉眼可見的時間量程比任何互相作用的固體表面內(nèi)在的自由程度時間量程都大,這種看法就是可行的。但是有一種內(nèi)在的時間量程是分歧的,就是表面的相對速度變?yōu)?0:它等于表面特有的側(cè)部長度值和相對速度的比值。這樣,任何動摩擦定律 FK(v)都會變的殘缺不全如果 第 9 頁 共 10 頁 t i m es ca l ecm i cr o s co p is ca l el en g t hcm i cr o s co p iv ( 6) 這個特有的長度的范圍從幾微米到幾米。這可能是一個粗略的范圍,粗略的接觸范圍,表面粗糙度的相關(guān)長度,或者是彈性相關(guān)長度。任何干摩擦定律的局限性都不會涉及到擺動滑動狀態(tài)和持續(xù)滑動狀態(tài),只要它們的相對滑動速度始終保持在比臨界速度 (6)大的范圍內(nèi)。但是在粘 滑運(yùn)動中,粘住向滑動轉(zhuǎn)變之后的瞬間和在滑動向粘住轉(zhuǎn)變前的瞬間將大大影響粘住和滑動的轉(zhuǎn)變 ,界面的動力學(xué)行為細(xì)節(jié)會變得很重要。當(dāng)最大相對滑動速度減少的時候這些細(xì)節(jié)資料的重要性將增加。例如, Heslot et al 3 用實(shí)驗(yàn)方法創(chuàng)立了十分完整的不同的行為在一個滑動過程中當(dāng)最大相對速度比臨界速度值 (6)小。 本文在干摩擦能描述為速度依賴的動摩擦和靜止時間依賴的靜摩擦的假設(shè)下討論了諧波振蕩器在一個固體平面上滑動的非線性動力學(xué)。除眾所周知的持續(xù)滑動狀態(tài)和粘 滑振蕩器之外,建立了一種沒有粘住的擺動滑動狀態(tài)。所有這些分歧點(diǎn)都在圖 3中表示了出來。 致謝 我充滿感激地致謝托馬斯以及他的原稿讀物。本作品由瑞 士國家自然科學(xué)基金會支持。 參考文獻(xiàn) 1 Bowden F P and Tabor D 1954 Friction and Lubrication (Oxford: Oxford University Press) 2 Rabinowicz E 1965 Friction and Wear of Materials (New York: Wiley) 3 Heslot F, Baumberger T, Perrin B, Caroli B and Caroli C 1994 Phys. Rev. E 49 4973 4 Burridge R and Knopoff L 1967 Bull. Seismol. Soc. Am. 57 341 5 Bhushan B, Israelachvili J N and Landman U 1995 Nature 374 607 6 Berman A D, Ducker W A and Israelachvili J N 1996 The Physics of Sliding Friction ed B N J Persson and 第 10 頁 共 10 頁 E Tosatti (Dordrecht: Kluwer Academic) 7 Persson B N J 1994 Phys. Rev. B 50 4771 8 Persson B N J 1995 Phys. Rev. B 51 13 568 9 Vetyukov M M, Dobroslavskii S V and Nagaev R F 1990 Izv. AN SSSR. Mekhanika Tverdogo Tela 25 23(Engl. transl. 1990 Mech. Solids 25 22) 10 Israelachvili J N 1985 Intermolecular and Surface Forces (London: Academic) 11 Mate C M, McClelland G M, Erlandsson R and Chiang S 1987 Phys. Rev. Lett. 59 1942 12 For an overview and more references on the physics of granular materials see Jaeger H M, Nagel S R and Behringer R P 1996 Physics Today 49 32 13 Kevorkian J and Cole J D 1981 Perturbation Methods in Applied Mathematics (New York: Springer) 14 Yoshizawa H and Israelachvili J 1993 J. Phys. Chem. 97 11 300 第 11 頁 共 10 頁 Nonlinear dynamics of dry friction Franz-Josef Elmer Institut fur Physik, Universitat Basel, CH-4056 Basel, Switzerland Received 5 November 1996, in final form 21 May 1997 Abstract: The dynamical behaviour caused by dry friction is studied for a spring-block system pulled with constant velocity over a surface. The dynamical consequences of a general type of phenomenological friction law (stick-time-dependent static friction, velocity-dependent kinetic friction) are investigated. Three types of motion are possible: stickslip motion, continuous sliding, and oscillations without sticking events. A rather complete discussion of local and global bifurcation scenarios of these attractors and their unstable counterparts is present. Coulombs laws 1 of dry friction have been well known for over 200 years. They state that the friction force is given by a material parameter (friction coefficient) times the normal force. The coefficient of static friction (i.e. the force necessary to start sliding) is always equal to or larger than the coefficient of kinetic friction (i.e. the force necessary to keep sliding at a constant velocity). The dynamical behaviour of a mechanical system with dry friction is nonlinear because Coulombs laws distinguish between static friction and kinetic friction. If the kinetic friction coefficient is less than the static one, stickslip motion occurs where the sliding surfaces alternately switch between sticking and slipping in a more or less regular fashion 1. This jerky motion leads to the everyday experience of squeaking doors and singing violins. Even though Coulombs laws are simple and well established (many calculations in engineering rely on these laws), they cannot be derived in a rigorous way because dry friction is a process which operates mostly far from equilibrium. It is therefore no surprise that deviations from Coulombs laws have often been found in experiments. 第 12 頁 共 10 頁 Typical deviations are as follows. (i) Static friction is not constant but increases with the sticking time 2, 3, i.e. the time since the two sliding surfaces have been in contact without any relative motion. (ii) Kinetic friction depends on the sliding velocity; for very large velocities, it increases roughly linearly with the sliding velocity like in viscous friction. Coming from large velocities, the friction first decreases, goes through a minimum, and then increases 3, 4. In the case of boundary lubrication (i.e. a few monolayers of some lubricant are between the sliding surfaces) it decreases again for very low velocities (see figure 1) 5, 6. The coefficient of kinetic friction as a function of the sliding velocity therefore has at least one extremum. The kinetic friction can exceed the static friction, but in the limit of zero sliding velocity it is still less than or equal to the static friction. The aim of this paper is to give a rather complete discussion of the nonlinear dynamics of a single degree of freedom for an arbitrary phenomenological dry friction law in the sense mentioned above. This goes beyond the discussion of specific laws found in the literature 1, 3, 4, 69. A phenomenological law for the friction force depends only on the macroscopic degrees of freedom. This implies that all microscopic degrees of freedom are much faster than Figure 1. Schematical sketches of typical velocity-dependent kinetic friction laws for (a) systems without and (b) systems with boundary lubrication. 第 13 頁 共 10 頁 the macroscopic ones. At the end of this paper a simple argument will be given on why this assumption will not always be valid. To reveal this invalidity on the macroscopic level, it is therefore important to have a complete knowledge of the dynamical behaviour under the assumption that this timescale separation works. There are two other important reasons for knowing the consequences of the different dry friction laws. (i) Friction coefficients can only be measured within an apparatus (for example the surface force apparatus 10 or the friction force microscope 11). Below we will see that the dynamical behaviour of the whole system is strongly determined by the friction force and the properties of the apparatus. For example, stickslip motion makes it difficult to directly obtain the coefficient of kinetic friction as a function of the sliding velocity. Thus, the influence of the measuring apparatus cannot be eliminated. (ii) Dry friction also plays an important role in granular materials 12. An open question there is whether or not the cooperative behaviour of many interacting grains is significantly influenced by the dynamical behaviour due to modifications of Coulombs laws. The mechanical environment (e.g. the apparatus) of two sliding surfaces may have many macroscopic degrees of freedom. The most important one is the lateral one. Here only systems are discussed which can be well described by this single degree of freedom. Figure 2 schematically shows the apparatus. It is described by a harmonic Figure 2. A harmonic oscillator with dry friction. 第 14 頁 共 10 頁 oscillator where a block (mass M) is connected via a spring (stiffness k) to a fixed support (see figure 2). The block is in contact with a surface which slides with constant velocity v0. The interaction between the block and the sliding surface is described by a sticking-time-dependent static friction force )(stickS tF and a velocity-dependent kinetic friction force )(vFK. For the equation of motion we have to distinguish whether the block sticks or slips. If it sticks, its position x grows linearly in time until the force in the spring (i.e. kx ) exceeds the static friction FS. Thus kttFxifvxrS /)(0 (1a) where ttr is the time at which the block has stuck again after a previous sliding state. If the block slips, the equation of motion reads )()( 00 xvFxvs i g nkxxM K (1b) if kFxorvxS /)0(0 where sign(x) denotes the sign of x. We start our investigation with Coulombs laws of constant static and kinetic friction.As long as 0vx the system behaves like an undamped harmonic oscillator with the equilibrium position shifted by the amount of kFK / . Thus, there are infinitely many oscillatory solutions. Below we will see that some of them may survive in the case of velocity-dependent kinetic friction. The equilibrium position of the block is k/)v(0KFx . It is called the continuously sliding state. Every initial state which would lead to an oscillation with a velocity amplitude exceeding v0 leads in a finite time to stickslip motion. Independent of the initial condition, the slips always start with0,/ vxkFx S . Thus, the stickslip motion defines an attractive limit cycle in phase space. This is not in contradiction with the 第 15 頁 共 10 頁 fact that the system behaves otherwise like an undamped harmonic oscillator. The reason for that is that a finite bounded volume in phase space is contracted onto a line if it hits that part in phase space which is defined by (1a). Stickslip motion requires a kinetic friction FK which is strictly less than the static one. Usually the sticking time )/()(2 0kvFFt KSs tic k is much larger than the slipping time kMkMvFFt KSs l i p /)()a r c ta n (2 2/110 . The maximum amplitude of the stickslip oscillation (i.e. )(max txt) is a monotonically increasing function of v0 which starts at kFS / for v0= 0. This is also true for a velocity-dependent kinetic friction force. The unmodified Coulombs law leads to a coexistence of the continuously sliding state and stickslip motion for any value of the sliding velocity0v. In the more general case of a velocity-dependent kinetic friction this bistability still occurs but in a restricted range of v0. Especially, there will always be a critical velocity cvabove which stickslip motion disappears. This is an everyday experience: squeaking of doors can be avoided by moving them faster. In order to be more quantitative we solve the equation of motion for a linear dependence of KF on v, i.e. 0,)(0 w i t hvFvF KK.Equation (1b) becomes the equation of a damped harmonic oscillator which can be easily solved. Instead of a continuous family of oscillatory solutions we have an attractive continuously sliding state. Stickslip motion disappears if the trajectory with 0)0(,/)0( vxkFx S never sticks for t 0. The critical velocitycvv 0is defined by 00 )(,/( vtxkFtx s lipKs lip . It leads to two nonlinear algebraic equations forsliptandcv. For Mk the solution can be given approximately: )(2 0 kMFFv KSc 第 16 頁 共 10 頁 (2) The critical velocity cv plays an important role in the discussion of the nature of stickslip motion, because its measurement tells us indirectly something about the mechanisms of dry friction (see the discussion in 6). Next we discuss a general non-monotonic)(vKFlike the examples shown in figure 1. The static friction SF is still assumed to be constant. The continuously sliding state exists for all values of 0vbut it is only stable if 0/)(00 dvvdFF KK. At an extremum of )(vFK the stability changes and a Hopf bifurcation occurs. Near the extremum and for small deviations from the continuously sliding state the dynamics of .)()()( /0 ccetAk vFtx tMkiK (3) is governed by the amplitude equation (normal form) 13 AAMkMFiMFkAMFdtdA KKK 222 )(4(2 (4) If the third derivative of the kinetic friction at an extremum is positive, the Hopf bifurcation is supercritical, and in addition to the well known attractors mentioned above, another type of attractor appears. Here it is called the oscillatory sliding state. It is a limit cycle where the maximum velocity always remains less than v0. Thus the block never sticks. Its frequency is roughly given by the harmonic oscillator of the left-hand side of (1b). The second derivative of the kinetic friction is responsible for nonlinear frequency detuning. Note that the frequency of the stickslip oscillator is usually much smaller than the frequency of the oscillatory sliding state. This oscillatory state is similar to the limit cycle of Rayleighs equation 第 17 頁 共 10 頁 130)( 3 uuuu , in fact, Rayleighs equation is a special case of (1b). Depending on the kinetic friction, several stable and unstable limit cycles may exist. By varying v0 they are created or destroyed in pairs due to saddle-node bifurcations. It should be noted that the Hopf bifurcation described by (4) is not related to the Hopf bifurcation observed by Heslot et al 3 which occurs in a regime (called the creeping regime) where (1a) is not applicable (see also the discussion below about the validity of dry friction laws). An oscillatory sliding state exists only if its maximum velocity is smaller than the sliding velocity v0 because of the sticking condition (1a). How does the interplay of the oscillatory sliding states and the sticking condition lead to stickslip motion? In order to answer this question we calculate the backward trajectory of the point ),/)0(lim 00 vkF K in accordance with (1b). Three qualitatively different backward trajectories are possible. (1) The backward trajectory hits the sticking condition. Together they define a bounded set of initial conditions leading to non-sticking trajectories. The boundary of this set is called the special stickslip boundary; it is not a possible trajectory but it separates between the basins of attraction of the stickslip oscillator and the non-stickslip attractors. (2) The backward trajectory spirals inwards towards an unstable oscillatory or continuously sliding state. Again all initial states outside these repelling states are attracted by a stickslip limit cycle. (3) The backward trajectory spirals outward towards infinity, and stickslip motion is impossible. Two types of local bifurcations are possible: if the backward trajectory changes from case 1 to case 3 the stickslip limit cycle annihilates with the special stickslip boundary. For changes from case 1 to case 2 the special stickslip boundary is either replaced by an unstable continuous or oscillatory sliding state or it annihilates with a 第 18 頁 共 10 頁 stable continuous or oscillatory sliding state. A change from case 2 to case 3 is not possible. Figure 3 shows, for a particular choice of )(vFK, both types of bifurcations. Here the first bifurcation type occurs at v0 0.059,0.082,and 0.966.The second type occurs at v0 0.162,and 0.785This example shows that for increasing v0 stickslip motion can disappear and reappear again. Besides the well known bistability between stickslip motion and continuous sliding 3, multistability between one continuously sliding state, several oscillatory sliding states, and one stickslip oscillator are possible (see figure 3). Eventually for large sliding velocities all attractors except that of the continuously sliding state will disappear because the kinetic friction has to be an increasing function for sufficiently large sliding velocities. The strongly overdamped limit (i.e. kMdvvdFk /)( for any v except in tiny Figure 3. Typical bifurcation scenarios for a particular kinetic friction force )(vFK of the 第 19 頁 共 10 頁 intervals around the extrema) leads to a separation of timescales. From an arbitrary point ),( xx in phase space with0vxthe system moves very quickly into the point. ),( vx where v is a solution of 0)(),(00 vvFvvFkx kk. Points on the curve )(0 xvFkx k with 0kFare unstable. They separate basins of attraction of different solutions v. After the fast motion has decayed the system moves slowly on the curve )(0 xvFkx k . The direction is determined by the sign of x . It either reaches a stable continuously sliding state, or, near an extremum ofkF, it jumps suddenly to another branch of the curve or to the sticking condition. For kinetic friction laws of the form shown in figure 1(b) with v0 between the two extrema, we get an oscillatory sliding state. It is a relaxation oscillation which may be difficult to distinguish from a stickslip oscillation. In the case of a friction law with a single minimum at mvvas shown in figure 1(a) we get stickslip motion for mvv 07. In the strongly overdamped limit any multistability disappears except near the extrema of )(vFK . The experiments of Yoshizawa and Israelachvili 14 are consistent with the assumption that the system is in a strongly overdamped limit with a friction law as shown in figure 1(a) 7. In order to discuss the influence of a stick-time-dependent static friction on the 第 20 頁 共 10 頁 stickslip behavior we define a stickslip map )(1 nn xTx , where nxis the position of the block just before slipping. For constant static friction the map reads kFxTS /)( . The position just at the time of the slip-to-stick transition is defined by snx. It is a function ofnx, i.e. )(nsn xgx , where g is usually a monotonically decreasing function. The sticking time stickntis the smallest positive solution of s tic knsns tic knS tvxktF 0)( (5) This defines a function )( nsstickn xht which is a monotonically decreasing function due to 0SF .Thus the stickslip map is given by kxghFxT S /)()( . If the map has one fixed point, then stickslip motion exists. ForSK Ftco n sF tan, stickslip motion disappears if )/()0()(2s u p 00 ktFtFvv SStc . For a non-convex )(tFS , the supremum occurs at a non-zero value of the sticking time leading to a saddle-node bifurcation of a stable and an unstable fixed point of the stickslip map. Atcvv 0the stickslip motion has a finite amplitude, in contrast to the case of a convex )(tFS8.Because T is a monotonically increasing function, limit cycles or even chaos are not possible. If the slip-to-stick transition does not happen at the first time when x becomes equal to v0 (because of kFxSns /)0() chaotic motion may occur 9. In this case we get a non-monotonic T due to a non-monotonic g. Such over-shooting is only possible if )0(/)(SS FF becomes relatively large. For example, for a constant kinetic friction over-shooting occurs if )0(/)0(1)0(/)( FFFFKSS . For most realistic systems 第 21 頁 共 10 頁 this condition is not satisfied. Note that the possibility of chaos is not in contradiction to the fact that the equation of motion (1) with constant FS cannot show chaotic motion. But the retardation of FS turns (1) into a kind of differential-delay equation. Using phenomenological dry friction means that we treat dry friction as an element in a mechanical circuit with some nonlinear velocity-force characteristic such as, say, a diode in an electrical circuit. This treatment is justified as long as the macroscopic timescales are much larger than any timescale of the internal degrees of freedom of the interacting solid surfaces. But there is one internal timescale which diverges if the relative velocity between the surfaces goes to zero: it is given by the ratio of a characteristic lateral length scale of the surface and the relative sliding velocity. Thus, any kinetic friction law )(vFK becomes invalid if t i m es ca l ecm i cr o s co p is ca l el en g t hcm i cr o s co p iv (6) The characteristic length scale ranges from several micrometres to several metres. It may be the size of the asper
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年初中人教版《物理》九年級全一冊第十八章第二節(jié)“電功率”說課稿
- 3.2 熔化和凝固 說課稿 2025年初中人教版物理八年級上冊
- 共同購房協(xié)議書范本
- 學(xué)校戰(zhàn)略合作協(xié)議
- 物聯(lián)網(wǎng)居間協(xié)議
- 二零二五年度北京市化工原料寄存與倉儲環(huán)境監(jiān)測合同
- 地塊項(xiàng)目基坑工程 投標(biāo)方案(技術(shù)方案)
- 航空運(yùn)輸與服務(wù)系統(tǒng)作業(yè)指導(dǎo)書
- 三農(nóng)產(chǎn)品產(chǎn)銷對接網(wǎng)絡(luò)平臺建設(shè)方案
- 創(chuàng)業(yè)孵化基地入駐條件及運(yùn)營管理辦法匯編
- GB/T 7129-2001橡膠或塑料軟管容積膨脹的測定
- 市政綠化工程施工監(jiān)理要點(diǎn)
- 成品欄桿安裝施工方案
- JT∕T 1431.3-2022 公路機(jī)電設(shè)施用電設(shè)備能效等級及評定方法 第3部分:公路隧道照明系統(tǒng)
- 總包單位向各分包移交建筑一米線交接單
- 某隧道仰拱棧橋施工方案
- DB37∕T 5197-2021 公共建筑節(jié)能監(jiān)測系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 門診特定病種待遇認(rèn)定申請表
- 手衛(wèi)生知識培訓(xùn)PPT課件下載
- 鋼結(jié)構(gòu)設(shè)計總說明(新版)
- 碼頭基本建設(shè)程序?qū)徟鞒虉D
評論
0/150
提交評論