外文翻譯=通過鍵合圖對剪刀舉升原理做動態(tài)分析=4500字符_第1頁
外文翻譯=通過鍵合圖對剪刀舉升原理做動態(tài)分析=4500字符_第2頁
外文翻譯=通過鍵合圖對剪刀舉升原理做動態(tài)分析=4500字符_第3頁
外文翻譯=通過鍵合圖對剪刀舉升原理做動態(tài)分析=4500字符_第4頁
外文翻譯=通過鍵合圖對剪刀舉升原理做動態(tài)分析=4500字符_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中國地質(zhì)大學(xué)長城學(xué)院 本科 畢業(yè) 設(shè)計 外文資料翻譯 系 別 : 工程技術(shù)系 專 業(yè): 機械設(shè)計制造及其自動化 姓 名: 殷玉磊 學(xué) 號: 05211521 2015年 4 月 1 日 外文資料翻譯譯文 通過鍵合圖對剪刀舉升原理做動態(tài)分析 Md Toufiqul Islam, Cheng Yin, Shengqi Jian, and Luc Rolland 摘要 本文描繪了基于鍵合圖建??蚣?的剪刀舉升機理(即四桿并聯(lián)機構(gòu))下普通多體系統(tǒng)動力的實現(xiàn)。剪刀舉升機理是高低汽車工業(yè)的首選,系統(tǒng)有一個自由度,有一些源于經(jīng)典力學(xué)剛體動力學(xué)方程的程序 (例如 Classic Newton-DAlembert, Newton-Euler, Lagrange, Hamilton, kanes to name a few),但是這些對于大型復(fù)雜系統(tǒng)計算量特別大,從而容易出錯,這里我們將生成機理的多體動力學(xué)模型鍵合圖,因為它為不包含任何因果關(guān)系沖突和控制工程的閉環(huán)運動模型提供了靈活性。本文中的機理是建模和模擬,以便評估一些特定應(yīng)用需求,如動態(tài)和位置精度。提出的機理的多體動力模型提供一個準(zhǔn)確快捷的方法來交接分析動態(tài)機理,這里沒有采用剪刀舉升機構(gòu)。仿真給了一個關(guān)于處于線性位移機理的不同鏈接長度的電動機轉(zhuǎn)矩大小的清晰想法。 1、 介紹 剪刀舉升類型升降平臺的主要用途是有無人工的負(fù)載垂直運動,它們被廣泛用于組裝工作 (如飛機零部件裝配 ,發(fā)動機部件組裝 ),維護(hù)結(jié)構(gòu)也可用于內(nèi)部材料運輸系統(tǒng)。如果正確安裝在汽車或卡車,即適應(yīng)不同的用途,剪刀舉升機構(gòu)可以移動 1。大型復(fù)雜的機械系統(tǒng)越來越重要,為了剪刀舉升機理的特有性和功能性,動態(tài)仿真系統(tǒng) 非常重要,因為他們的主要功能是提高勞動者的工具和負(fù)載所需的高度 ,同時允許操作員控制電梯的運動和位置。因此剪刀舉升機理的適當(dāng)設(shè)計、制造和維護(hù),提高了勞動者的工作效率和安全系數(shù) 2。不幸的是,剪刀舉升操作中也會發(fā)生致命和非致命事故事故 3,4。因此對于調(diào)查系統(tǒng)的動態(tài)行為,適當(dāng)?shù)膭討B(tài)模型是很有必要的。這種機理有四桿機構(gòu)和曲柄滑塊機構(gòu)組成,圖 1顯示了這兩種機構(gòu),圖 2顯示了完整的剪刀舉升機理。這些鏈接形成了一個平行運動機理并有轉(zhuǎn)動關(guān)節(jié)鏈接。每個四個鏈接形成一個所有鏈接長度一樣的菱形結(jié)構(gòu),驅(qū)動機構(gòu)與位于地面移動平臺 的底部連接,基于設(shè)計準(zhǔn)則,驅(qū)動機構(gòu)可以是電動、液壓、氣動,系統(tǒng)可以以不同的方式連接它們,連接它們的一些受歡迎方法用來連接彎管接頭的中心,或者作為曲柄滑塊固定在底座上,或者連接到執(zhí)行機構(gòu)(如液壓、氣動)。這里我們把直流電機作為驅(qū)動機構(gòu),它位于底部與曲柄滑塊連接,第二節(jié)中介紹關(guān)于多體動力學(xué)的問題,第三節(jié)分析機構(gòu)運動,第四節(jié)介紹系統(tǒng)動態(tài)模型的開發(fā)過程,第五節(jié)提出了仿真結(jié)果,第六節(jié)進(jìn)行模型驗證,第七節(jié)討論模型,最后,第八節(jié)得出結(jié)論。 圖 1.四桿機構(gòu)和曲柄滑塊機構(gòu) 圖 2.2個剪刀舉升機構(gòu)的基本框架 2、 背景研究 1603年,縮放儀由 Christopher Scheiner發(fā)明,被視為四桿機構(gòu)的第一個例子 5,后來, James Watt提出四桿機械裝置,可以做近似直線運動 6。一些機構(gòu)用來產(chǎn)生直線輸出運動,其輸入元素在一天旋轉(zhuǎn)、震蕩、移動的直線上。由四連桿機構(gòu)組成的剪刀舉升裝置是 Larson等人于 1966年創(chuàng)建的 7,這種機械裝置與可擴展的負(fù)載升降機構(gòu)相關(guān),更特別的是,這涉及到包括相對立的剪刀機構(gòu),每一個剪刀機構(gòu)包含一對完全連接的剪刀手臂,伴隨著升降相對關(guān)鍵的運動。與當(dāng)代設(shè)計相比,可以提供相對大量鏈接長度相對較 短向上擴展,由于是并行裝置,重量非常小剛性更好。這種機制的另一個優(yōu)點是 ,它是相對自由的復(fù)雜的連鎖系統(tǒng) ,但仍有高能力的擴展與短臂。 A 多體動力學(xué) 在 6中討論奇點配置和菱形的運動機構(gòu),在 8中探討了基于 Matlab仿真描繪系統(tǒng)運動分析的另一種方法。盡管有兩篇文獻(xiàn)提到了動態(tài)剪刀舉升機構(gòu)的處理,文獻(xiàn)數(shù)量有限,但是已經(jīng)詳盡研究了多體動力學(xué)建模與仿真的一般問題。尤其是多體動力分析由于像 Newton, DAlembert, Euler and Lagrange這樣的先驅(qū)有了豐富的歷史的發(fā)展。在 910中可以發(fā) 現(xiàn)關(guān)于多體動力學(xué)的文學(xué)綜述。首先,基于牛頓力學(xué)研究多體動力學(xué)系統(tǒng),歐拉后來用框架來研究剛體運動,他還利用 freebody原理建模約束和關(guān)節(jié),到目前為止牛頓歐拉方程適用于多體動力學(xué)的研究。與歐拉同時代的拉格朗日還建立了約束力學(xué)系統(tǒng)的系統(tǒng)分析,變分原理應(yīng)用于系統(tǒng)的總動能和勢能考慮其運動學(xué)約束和相應(yīng)的廣義坐標(biāo)的拉格朗日方程結(jié)果的動態(tài)分析是非常有用的多體系統(tǒng),進(jìn)化的多體系統(tǒng)動力學(xué)理論和經(jīng)典力學(xué)和剛體系統(tǒng)的應(yīng)用可以歸因于有效的數(shù)值方法的發(fā)展解決高度非線性方程組產(chǎn)生的動態(tài)系統(tǒng) 9。在這種演變過程中,研究人員對建模形式 做出了貢獻(xiàn),根據(jù) 9,這些形式可分為兩類 ,即數(shù)字和符號。在 10中 Sinha等人把建模的方法分為兩組,第一組與由基于圖論的系統(tǒng)建模生成的組件相關(guān),線性圖理論用于分析多體動力學(xué),例子包括 1112。除了線性圖,結(jié)合圖也被用于多體動力學(xué)模型,如 131415。在 16中,Diaz等人描述了 3D立體建模的線性圖表方法,他們還直接推論線性圖表反映了系統(tǒng)的拓?fù)浣Y(jié)構(gòu);因此,它更容易讓非專業(yè)人士創(chuàng)建系統(tǒng)描述。第二組是基于模塊化、面向?qū)ο蟮哪P?,可以分層次組合成完整的系統(tǒng),例如 1718。在 19中 Antic等人描繪了結(jié)合圖的優(yōu)點,他們提到理論上它可以描繪子系統(tǒng)和形式主義之間的層次結(jié)構(gòu)和聯(lián)系。這提供了計算機建模和仿真的支持。 B 計算多體動力學(xué) 對于建模機理,多體系統(tǒng)社區(qū)開發(fā)了許多軟件工具;然而,它們在模型描述、力學(xué)基本原理的選擇和拓?fù)浣Y(jié)構(gòu)上廣泛不同,以至于不存在統(tǒng)一的描述模型 9。在20Gillespie等人提出了一種計算多體動力學(xué)的全面審查。一些商業(yè)軟件包可用于數(shù)值解決多體動力學(xué)問題,其中一些基于計算機輔助工程 (CAE);例如包括 ADAMS21 DADS 22 和 MESA VERDE 23。 Dymola和 Modelica是兩個大型系統(tǒng)建模的面向?qū)ο蟮慕UZ言 16。 20-Sim軟件是一個鍵合圖模型多體動力學(xué)系統(tǒng)非常有效的和高效的工具 24。它提供了允許創(chuàng)建模型快速和直觀的工具,模型可以通過使用方程 ,建立塊圖、物理組件和結(jié)合圖來建立,它提供了各種建立不同模型的工具箱,模擬和分析他們的性能。該軟件還包含 3 d機械工具箱為多體建模提供靈活性。 圖 3.動力學(xué)分析 3、 機理的運動分析 在 7中描述了基于剪刀舉升機理的短暫的液壓執(zhí)行機構(gòu)的運動分析。在多階段剪刀舉升機理中動鏈接形成一個 菱形的配置, Dr. Rolland做了菱形結(jié)構(gòu)配置和重復(fù)菱形結(jié)構(gòu)的詳細(xì)運動學(xué)分析 5。剪刀舉升的運動分析可以通過觀察圖 3 的循環(huán)。從圖 3 中102 循環(huán)形成一個等腰三角形,所以 。輸入為 s輸出為 h。應(yīng)用勾股定理: 把( 4)對時間求導(dǎo)得到速度。 由 (1)我們可以得到反向關(guān)系: 把( 6)對時間求導(dǎo)得到: 把 h對 求導(dǎo)得: 圖 3中 H=2h,圖 2中總高度是 4h,把( 5)和 (7)對時間求導(dǎo)得到加速度。 4、 動力學(xué)機理 Dong等人調(diào)查剪刀的動態(tài)穩(wěn)定性提升 機制,并基于動態(tài)特性的仿真研發(fā)了集總參數(shù)模型 2。這是一個基于實際工作的方法而且在整個系統(tǒng)上沒有提出動態(tài)模型,因此本文提出一種動態(tài)模型的完整系統(tǒng),有吸引力的和快速的所需的時間和精力相比 ,經(jīng)典的動力學(xué)建模方法。 圖 4.鏈接示意圖 A、 每個鏈接的鍵合圖模型 對于一個單波束的鍵合圖模型身體被認(rèn)為是質(zhì)量和轉(zhuǎn)動慣量,外部力量應(yīng)用于 A、B端口,當(dāng)多體系統(tǒng)中的所有身體包含三個慣性坐標(biāo) (x,y,),制定會變得更容易, B點速度相對 G點的速度關(guān)系為: G點是鏈接的重力中心,設(shè) G點到 B點的距離為 r,則方程將是: 根據(jù) 以上方程, B點的 x、 y軸的分量為: ( 14) G點相對 A點的速度為: A點在 x、 y軸的速度矢量和表示為: 為使 A、 B固定,我們只需在附加力的鍵合圖上應(yīng)用零流源或近零, MTF用于鍵合圖的速度限制。圖 4顯示了梁的鍵合圖,其中長度、質(zhì)量和慣性參數(shù)被視為總體參數(shù)。 圖 5.鏈接鍵合圖 B、 寄生剛度和阻尼 為了建模每個機械聯(lián)合,要考慮寄生剛度和阻尼。剛度和阻尼是許多機械系統(tǒng)設(shè)計的重要標(biāo)準(zhǔn)。剛性聯(lián)軸器彈簧用于使用機械連接來消除系統(tǒng)的微分因果關(guān)系。我們可以用寄生剛度和 /或電阻元素 移除能量儲存元素之間的依賴關(guān)系 25,圖 6. 顯示了寄生剛度和阻尼結(jié)構(gòu)應(yīng)用于鍵合圖的設(shè)計。 C、 電機建模 在提供的直流電機中,電壓通過串行連接的電感和電阻去向電樞,然后電樞提供電動勢作為機械輸出。為了在鍵合圖中建模直流電機,阻力和回轉(zhuǎn)器元素用于表示上述標(biāo)準(zhǔn)。電機軸是通過電感和電阻元件建模,圖 7顯示了直流電機的鍵合圖模型。 D、 控制機制 作為單自由度系統(tǒng), PID控制器已被選中, PID將在當(dāng)前平臺位置和期望平臺位置相比較,基于兩個高度之間的差異控制電動機的輸出,圖 8顯示控制機制的示意圖。 圖 6. 寄生剛度和阻尼 圖 7. 直流電機鍵合圖 PID 分別代表比例、積分和導(dǎo)數(shù), PID 參數(shù)調(diào)優(yōu)實現(xiàn)了反復(fù)試驗優(yōu)化方法,這主要基于猜測和檢測。在這種方法中,主要貢獻(xiàn)是比例作用 ,它可以通過積分和微分作用??刂茩C制是有限制的,它將把輸出限制在制定范圍內(nèi),以便不切實際的的值驅(qū)動電機,限制塊后面是一個調(diào)制源。有兩種可用的鍵合圖工作源,一個是固定的 ,另一個是可變的,對于 PID控制器提供的電機不同輸入,這里我們使用不同的變量工作源。電機之后的變壓器把旋轉(zhuǎn)運動變?yōu)橹本€運動。 圖 8.控制機制 5、 仿真 表 1.仿真結(jié)果 圖 9.菱形階梯剪刀 舉升平臺的鍵合圖 A、 向上運動的仿真(期望高度為 6m,初始高度為 5m) 圖 10.平臺從初始高度到期望高度 圖 11.原動件初始運動需求 圖 12.原動件速率 圖 13.加速效應(yīng) B、 向下運動仿真(期望高度為 4m,初始高度為 5m) 圖 14. 平臺從初始高度到期望高度 圖 15. 原動件初始運動需求 圖 16. 原動件速率 圖 17.加速效應(yīng) 6、 仿真結(jié)果 對于第一次仿真平臺從初始高度 5m移動到 6m(圖 10),根據(jù)圖 2的剪刀升升機制基礎(chǔ)上的驅(qū)動鏈接應(yīng)該從其原始位置向后的方向在 D增加平臺的高度從 5米到 6米 (圖11)。圖 12顯示了驅(qū)動鏈的速率。衍生物的速度在圖 13中給出了加速度。對于第二次仿真平臺所需高度被設(shè)定為 4m,比初始高度 5m低(圖 14)。根據(jù)機制基礎(chǔ)上的驅(qū)動鏈接應(yīng)該前進(jìn)的方向在點 D降低平臺的高度和平臺高度應(yīng)該從 5米減少到 4米 (圖 15)。圖16顯示了驅(qū)動鏈的速率。圖 17顯示了所需的向下運動最終效應(yīng)加速度?,F(xiàn)在我們可以說從模擬結(jié)果曲線清晰地描述該模型的功能。 7、 討論 本文提出一種充分剪刀舉升控制機制模型,對比結(jié)果不幸的是沒有得出剪刀舉升機制的產(chǎn)物。該模型可以描述整個動力學(xué) (位移、速度、加速度等 ),系統(tǒng)的輸入 是電動機轉(zhuǎn)矩,模型的另一個重要方面是包含控制器的機制,對于動態(tài)系統(tǒng)最傳統(tǒng)的方法可以不包括控制,但鍵合圖提供了包括電機動力學(xué)和控制重要的優(yōu)勢,這實際上是允許完整的自動動態(tài)系統(tǒng)仿真,鍵合圖建??蚣艿牧硪粋€關(guān)鍵優(yōu)勢是快速的分析機制,剪刀舉升機制在速度和加速度上響應(yīng)不快,但是我建議在產(chǎn)業(yè)中進(jìn)行快速直線運動。在產(chǎn)業(yè)里機制可用于構(gòu)建高性能線性致動器,這里鍵合圖建模比方程建模更具優(yōu)勢,因為它使用了圖形的方法,并能快速簡易實現(xiàn),鍵合圖利用二維圖紙的關(guān)系可表達(dá)方程編程相比之下更自然 26。在模擬中不同參數(shù)組合可以用來模擬觀 察反應(yīng),從仿真輸出來看,可以出發(fā)一些優(yōu)化一些想法,如仿真可用于電動機轉(zhuǎn)矩的優(yōu)化剪刀提升機制 ,由于鍵合圖仿真非常迅速,幾個參數(shù)組合可以在很短的時間內(nèi)模擬,該模型的缺點之一是軟件不可用。為優(yōu)化PID控制器在這里我們使用了猜測和檢查方法,但我們可以實現(xiàn)任何其他 PID調(diào)優(yōu)技術(shù),在 20-sim PID塊包含溫順常數(shù),它影響差異化的行為,理解一個 PID回路是基于線性控制 , 它可能不會給剪刀舉升平臺上由非線性方程管理的最好結(jié)果。 8、 結(jié)論 在這項研究中剪刀舉升機制的動態(tài)行為建模和模擬使用商業(yè)軟件包( 20sim),模型的函數(shù)性 由所需輸出條件的應(yīng)用程序來證明。使用控制機制的一個合適的控制器 (PID控制器 ),仿真結(jié)果表明 ,該設(shè)計幾乎可以模擬一個實時應(yīng)用程序和仿真數(shù)據(jù)可以有效地用于優(yōu)化設(shè)計,工業(yè)優(yōu)化專業(yè)軟件 (例如設(shè)計專家 ,一款統(tǒng)計軟件等 )都可以使用。 20 sim軟件包鍵合圖建模和解決提供了良好的靈活性。盡管程序需要一些時間學(xué)習(xí)適度陡峭的學(xué)習(xí)曲線,自動化的模型生成功能可以在開發(fā)階段的多體系統(tǒng)提供很大的幫助。 外文原文 題目: Dynamic Analysis of Scissor Lift Mechanism through Bond Graph Modeling Md Toufiqul Islam, Cheng Yin, Shengqi Jian, and Luc Rolland AbstractThis paper describes the implementation of general multibody system dynamics on Scissor lift Mechanism (i.e. four bar parallel mechanism) within a bond graph modeling framework. Scissor lifting mechanism is the first choice for automobiles and industries for elevation work. The system has a one degree of freedom. There are several procedures for deriving dynamic equations of rigid bodies in classical mechanics (i.e. Classic Newton-DAlembert, Newton- Euler, Lagrange, Hamilton, kanes to name a few). But these are labor-intensive for large and complicated systems thereby error prone. Here the multibody dynamics model of the mechanism is developed in bond graph formalism because it offers flexibility for modeling of closed loop kinematic systems without any causal conflicts and control laws can be included. In this work, the mechanism is modeled and simulated in order to evaluate several application-specific requirements such as dynamics, position accuracy etc. The proposed multibody dynamics model of the mechanism offers an accurate and fast method to analyze the dynamics of the mechanism knowing that there is no such work available for scissor lifts. The simulation gives a clear idea about motor torque sizing for different link lengths of the mechanism over a linear displacement. I. INTRODUCTION The main use of scissor lift type elevating platforms is vertical transportation of load with or without human. They are widely used for the assembly works (e.g. aircraft parts assembly, motor parts assembly), the maintenance of constructions or they can be used in the inner material transportation system. The scissor lift structure can be mobile if it is mounted on the vehicle or the right truck, i.e. adaptable to different purposes 1. There is an increasing importance of modeling and simulation of complex and large mechanical systems. For scissor lifting mechanism proper and functional dynamic simulation of the system has a great importance as their primary function is to elevate worker tools and load to a desired height while allowing the operator to control the movement and position of the lift. Therefore proper designing, manufacturing and maintenance of scissor lifting mechanism not only increase productivity but also workers safety 2. Unfortunately, fatal accidents and non-fatal incidents have also happened during scissor lift operations 3,4.Therefore a proper dynamic model is very necessary to investigate the dynamic behavior of the system. This mechanism is comprised of two very well-known mechanisms which are four bar mechanism and slider crank mechanism. Fig.1 shows the mentioned two mechanisms and Fig.2 shows the complete system model of the scissor lift mechanism. The links form a parallel kinematic mechanism and they are connected by revolute joints. Each four link form a rhombus like structure and where length of each link is same. There is a driving mechanism connected with the lower end of the moving link which is located at the ground platform. The driving mechanism can be electric, hydraulic or pneumatic based on design criteria. They can be connected to the systems in different ways. Some very popular ways of connecting them are to connect at the center of corner joint or connect it on the base as slider crank or connected to any actuator link (e.g. hydraulic, pneumatic etc.). But here we considered one DC motor as the driving mechanism. It is located at the base and connected with the slider crank. A brief literature review relating to this multibody dynamics problem is presented in Section II. The kinematics of the mechanism is analyzed in Section III. The development process of the dynamic model of the system is offered in Section IV. The result from the simulation is presented in Section V. The model was verified in Section VI. Discussion about the model is presented in the Section VII. Finally, Section VIII offers the concluding remarks. Fig. 1. Four bar and Slider crank mechanism Fig. 2. Basic Construction of 2 stage Scissor Lift Mechanism II. BACKGROUND STUDY In 1603, the Pantograph was invented by Christopher Scheiner, which may be regarded as the first example of the four-bar linkage 5. Later James Watt proposed a four-bar mechanism which can generate roughly a straight line motion 6. Some mechanisms are designed to produce straight-line output motion from an input element which rotates, oscillates or moves also in a straight line. However, the scissor lifting mechanism an extrapolation from the four bar linkage was patented by Larson et al. in 1966 7. This mechanism relates to extensible lift mechanism for elevating a load. More particularly, this relates to such mechanism including an opposed pair of scissor mechanisms, each of which includes a pair of scissor arms pivotally connected together, where relative pivotal movement of the arms accompanies extension of the lift mechanism. In comparison to the contemporary designs, this mechanism can provide relatively large amount of upward extension with a relatively short link length. Weight is very small and rigidity is better due to parallel mechanism. Another big advantage of this mechanism is that it is relatively free of complicated linkage systems, but still capable of high extension with a short arm. A. Multibody Dynamics The singularity configurations and the kinematics of the rhombus part of the mechanism is discussed in 6. Another approach to describe the kinematic analysis of the system based on MATLAB simulation is discussed in 8. Though the mentioned two literatures dealing with the dynamics of the scissor lift mechanism are very limited, the general problem of modeling and simulation of multibody dynamics has been exhaustively studied. Especially analytic multibody dynamics has a rich history of development owing to pioneers like Newton, DAlembert, Euler and Lagrange. Detailed literature reviews on multibody dynamics can be found in 9, 10. Primarily, the study on the dynamics of multibody systems is based on Newtonian mechanics. Euler later contributed the framework to study the motion of rigid bodies. He also used the freebody principle to model constraints and joints. To date the Newton-Euler equations facilitates the study of multibody Dynamics. Eulers coetaneous Lagrange also established a systematic analysis of constrained mechanical systems. The variational principle applied to the total kinetic and potential energy of the system considering its kinematic constrains and the corresponding generalized coordinates result in the Lagrangian equations that are very useful to the dynamic analysis of multibody systems. Evolution of multibody system dynamics from the theory and applications of classical mechanics and rigid body systems can be attributed to the development of efficient numerical means to solve the highly nonlinear equations resulting from the dynamics of the system 9. In this evolution process, several modeling formalisms have been contributed by the researchers. According to 9, these formalisms can be categorized into two classes; namely, numeric and symbolic. Sinha et al. in 10 classified the modeling approaches into two groups. The first group is relevant to component based systems modeling that is based on graph theory. Linear graph theory has been used in the analysis of multibody dynamics; examples include 11, 12. Besides linear graphs, bond graphs have also been used to model multibody dynamics; e.g. 13, 14, 15. Diaz et al. in 16 describes linear graphs method to model 3D body mechanics. They also comment that linear graphs reflect the topology of the system directly; hence, it is easier for nonspecialists to create system descriptions. The second group is based on modular, object oriented models that can be hierarchically combined into complete systems; e.g., 17,18. Antic et al. in 19 describes the advantages of bond graph. They mentioned it can describe hierarchical structure and connections between subsystems of a system and formalism introduced in the theory. This offers computer support for modeling and simulation. B. Computational Multibody Dynamics For modeling of mechanisms the multibody systems community developed many software tools; however, they differ widely in terms of model description, choice of basic principles of mechanics and topological structure so that a uniform description of models does not exist 9. Gillespie et al. presented a comprehensive review on computational multibody dynamics in 20. Several commercial software packages are available to numerically solve the multibody dynamics problem. Some of these are based on Computer Aided Engineering (CAE); examples include ADAMS 21, DADS 22 and MESA VERDE 23. Dymola and Modelica are two object oriented modeling languages for large system modeling 16. 20-Sim software is a very effective and efficient tool to model multibody dynamic systems for bond graph 24. It provides tools that allow creating models very quickly and intuitively. Models can be created by using equations, block diagrams, physical components and bond graphs. It provides various tool boxes to build different models, to simulate them and analyze their performance. The software also contains 3D mechanics toolbox which provides flexibility for multibody modeling. Fig.3. Figure for kinematic analysis III. KINEMATIC ANALYSIS OF THE MECHANISM Brief kinematic analysis of hydraulic actuator based scissor lift mechanism is described in 7. In the multi stages scissor lift mechanism the moving links forms a rhombus configuration. A detailed kinematic analysis of the rhombus structure configuration and repeated rhombus structure is done by Dr. Rolland 5. The kinematic analysis for the scissor lift can be done by looking at the loops of Fig. 3. From fig. 3, = and the loop 102 forming an isosceles triangle. So, l12 = l/2 = l02 (Where l=length of each link). Input is S and output is h. Applying Pythagoras theorem: Differentiating (4) with respect to time gives the velocity. From (1) we can write another inverse relationship: By differentiating (6) with respect to time we get: The height h with respect to would be: Fig. 3 shows H =2h and the total height from Fig. 2 is 4h. Further differentiation of (5) and (7) with respect to time will give the acceleration. IV. DYNAMICS OF THE MECHANISM Dong et al. investigate the dynamic stability of scissor lift mechanism and a lumped parameter model was developed based on the dynamic characteristics resulted from the simulation 2. It was an approach based on practical work and no dynamic model was presented on the whole system. Hence this paper presents a dynamic model of the complete system which is attractive and fast compared to time and effort required by classic dynamics modeling methods. Fig.4. Schematic of a Single Link A. Bond graph Model of Each Link For bond graph modeling of a single beam a body is considered with mass and rotational inertia. External forces are applied at port A and B. Formulation become much easier when all bodies in a multibody system contains three inertial coordinate(x,y,). The velocity of the point B with respect to the point G can be formulated as: Where the point G is the center of the gravity of the link. If the distance from the point G to the point B is r then the equation will be: From the above equation the velocity component along x axis and velocity component along y axis of the point B are: To make A or B fixed we just need to apply zero flow source or approximately zero on parasitic spring in the bond graph. MTF is used in the bond graph to get the velocity constraints. Fig.4 shows the bond graph model of a single beam where length, mass and inertia parameters are considered as global parameter. Fig. 5. Bond graph of a single link B. Parasitic Stiffness and Damping To model each mechanical joint parasitic stiffness and damping are considered. Stiffness and damping are important criteria for many mechanical system designs. Stiff coupling springs are useful to use at mechanical joints to eliminate derivative causality of the system. We can use parasitic stiffness and/or resistive elements to remove dependencies among energy storage elements 25. Fig. 6 s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論