全文預覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
直線與平面之間的位置關(guān)系一知識梳理(1)判定定理:平面外一條直線與此_的一條直線平行,則該直線與此平面平行(線線平行線面平行)即:a,_,且ab_.(2)性質(zhì)定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的_與該直線平行(線面平行線線平行)即:a,a,l_.(3)平行問題的轉(zhuǎn)化關(guān)系兩點提醒(1)在推證線面平行時,必須滿足三個條件:一是直線a在已知平面外;二是直線b在已知平面內(nèi);三是兩直線平行(2)把線面平行轉(zhuǎn)化為線線平行時,必須說清經(jīng)過已知直線的平面與已知平面相交,則該直線與交線平行二考點自測1若兩條直線都與一個平面平行,則這兩條直線的位置關(guān)系是 ()A平行 B相交 C異面 D以上均有可能2在空間中,下列命題正確的是()A平行直線的平行投影重合B平行于同一直線的兩個平面平行C垂直于同一平面的兩個平面平行D垂直于同一平面的兩條直線平行3(2013長沙模擬)若直線ab,且直線a平面,則直線b與平面的位置關(guān)系是( ) Ab BbCb或b Db與相交或b或b4(2012四川)下列命題正確的是( )A若兩條直線和同一個平面所成的角相等,則這兩條直線平行B若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行C若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行D若兩個平面都垂直于第三個平面,則這兩個平面平行5在正方體ABCDA1B1C1D1中,E是DD1的中點,則BD1與平面ACE的位置關(guān)系為_三例題講解【例1】(2012遼寧)如圖,直三棱柱ABCABC,BAC90,ABACAA,點M,N分別為AB和BC的中點證明:MN平面AACC 方法總結(jié) (1)證明直線與平面平行的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì),或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行注意說明已知的直線不在平面內(nèi)(2)證明直線與平面平行的方法:利用定義結(jié)合反證;利用線面平行的判定定理;利用面面平行的性質(zhì)【訓練1】 如圖,在四棱錐PABCD中,底面ABCD是矩形,PA平面ABCD,APAB,BPBC2,E,F(xiàn)分別是PB,PC的中點(1)證明:EF平面PAD;【例2】如圖所示,在三棱柱ABCA1B1C1中,A1A平面ABC,若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE平面AB1C1?若存在,請確定點E的位置;若不存在,請說明理由解決探究性問題的方法1.采用先猜后證2.采用執(zhí)果索因的方法,假設(shè)求解的結(jié)果存在,從這個結(jié)果出發(fā),尋找使這個結(jié)論成立的充分條件,如果找到了符合題目結(jié)果要求的條件,則存在;如果找不到符合題目結(jié)果要求的條件(出現(xiàn)矛盾),則不存在四課時小結(jié)證明線面平行問題的答題模板(一)第一步:作(找)出所證線面平行中的平面內(nèi)的一條直線;第二步:證明線線平行;第三步:根據(jù)線面平行的判定定理證明線面平行;證明線面平行問題的答題模板(二)第一步:在多面體中作出要證線面平行中的線所在的平面;第二步:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個人房產(chǎn)抵押權(quán)抵押權(quán)轉(zhuǎn)讓合同3篇
- 2025年度個人貸款擔保轉(zhuǎn)讓合同4篇
- 2025版住宅室內(nèi)精裝修與裝飾工程施工合同5篇
- 人類的起源和發(fā)展課件2
- 出租車行業(yè)環(huán)保措施考核試卷
- 團隊建設(shè)力量培養(yǎng)項目計劃書考核試卷
- 印刷業(yè)科技創(chuàng)新與成果轉(zhuǎn)化考核試卷
- 二零二五年度藝術(shù)品交易居間代理合同樣本3篇
- 2025年創(chuàng)業(yè)創(chuàng)新貸款協(xié)議
- 2025年合作知名作者的高需求小說電子書協(xié)議
- 廣東省佛山市2025屆高三高中教學質(zhì)量檢測 (一)化學試題(含答案)
- 人教版【初中數(shù)學】知識點總結(jié)-全面+九年級上冊數(shù)學全冊教案
- 2024-2025學年人教版七年級英語上冊各單元重點句子
- 2024年九年級語文中考名著閱讀《儒林外史》考前練附答案
- 抖音麗人行業(yè)短視頻直播項目運營策劃方案
- 2024年江蘇揚州市邗城文化旅游發(fā)展有限公司招聘筆試參考題庫含答案解析
- 小學六年級數(shù)學100道題解分數(shù)方程
- 社區(qū)獲得性肺炎護理查房內(nèi)科
- 淺談提高中學生歷史學習興趣的策略
- 項目管理實施規(guī)劃-無錫萬象城
- 浙大一院之江院區(qū)就診指南
評論
0/150
提交評論