人教版七年級數(shù)學(xué)上冊知識點大全1_第1頁
人教版七年級數(shù)學(xué)上冊知識點大全1_第2頁
人教版七年級數(shù)學(xué)上冊知識點大全1_第3頁
人教版七年級數(shù)學(xué)上冊知識點大全1_第4頁
人教版七年級數(shù)學(xué)上冊知識點大全1_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、人教版七年級數(shù)學(xué)上冊知識點大全1篇一:人教版數(shù)學(xué)七年級上冊知識點總結(jié)人教版數(shù)學(xué)七年級上冊知識點總結(jié)第一章有理數(shù)知識點總結(jié)0的數(shù)叫做正數(shù)。0既不是正數(shù)也不是負數(shù),是正數(shù)和負數(shù)的分界線,是整數(shù),一、正數(shù)和負數(shù)自然數(shù),有理數(shù)。(不是帶“”號的數(shù)都是負數(shù),而是在正數(shù)前加“”的數(shù)。)2.意義:在同一個問題上,用正數(shù)和負數(shù)表示具有相反意義的量。整 數(shù):正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)。數(shù):正分數(shù)、負分數(shù)統(tǒng)稱分數(shù)。(有限小數(shù)與無限循環(huán)小數(shù)都是有理數(shù)。)注:正數(shù)和零統(tǒng)稱為非負數(shù),負數(shù)和零統(tǒng)稱為非正數(shù),正整數(shù)和零統(tǒng)稱為非負整數(shù),負整數(shù)和零統(tǒng)稱為非正整數(shù)。按整數(shù)、分數(shù)分類: 正有理數(shù) 正整數(shù)正整數(shù) 正分數(shù) 整數(shù) 0

2、零 有理數(shù)負整數(shù) 負有理數(shù) 負整數(shù)分數(shù) 正分數(shù)負分數(shù)負分數(shù)概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸。 三要素:原點、正方向、單位長度2.對應(yīng)關(guān)系:數(shù)軸上的點和有理數(shù)是一一對應(yīng)的。三、數(shù)軸比較大?。涸跀?shù)軸上,右邊的數(shù)總比左邊的數(shù)大 。3.求兩點之間的距離:兩點在原點的同側(cè)作減法,在原點的兩側(cè)作加法。 (注意不帶“+”“”號)代數(shù):只有符號不同的兩個數(shù)叫做相反數(shù)。概念(0的相反數(shù)是0)幾何:在數(shù)軸上,離原點的距離相等的兩個點所表示的數(shù)叫做相反數(shù)。2.性質(zhì):若a與b互為相反數(shù),則ab=0,即a=-b;反之,若ab=0,則a與b互為相反數(shù)。四、相反數(shù) 兩個符號:符號相同是正數(shù),符號不同是負數(shù)。

3、3.多個符號:三個或三個以上的符號的化簡,看負號的個數(shù),當(dāng)概念:乘積為1的兩個數(shù)互為倒數(shù)。(倒數(shù)是它本身的數(shù)是1;0沒有倒數(shù))五、倒數(shù)2.性質(zhì) 若a與b互為倒數(shù),則a2b=1;反之,若a2b=1,則a與b互為倒數(shù)。若a與b互為負倒數(shù),則a2b=-1;反之,若a2b= -1則a與b互為負倒數(shù)。a的點與原點的距離叫做數(shù)a的絕對值。(若|a|b|,則ab或ab)一個負數(shù)的絕對值是它的相反數(shù)的絕對值是0a 0,|a|=a 反之,|a|a,則a0a = 0, |a|=0 |a|a,則a0a0, |a|=a注:非負數(shù)的絕對值是它本身,非正數(shù)的絕對值是它的相反數(shù)。a (a0) 的數(shù)有2個,他們互為相反數(shù)。即

4、a。|a|0。幾個非負數(shù)之和等于0,則每個非負數(shù)都等于0。故若|a|b|0,則a0,b01.數(shù)軸比較法:在數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大。2.代數(shù)比較法:正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù)。兩個負數(shù)比較大小時,絕對值大的反而小。同號兩數(shù)相加,取相同的符號,并把絕對值相加。絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。一個數(shù)同0相加,仍得這個數(shù)。八、加減法2.加法運算律:兩個加法交換律:兩數(shù)相加,交換加數(shù)的位置,和不變。即ab=ba加法結(jié)合律:在有理數(shù)加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。即a

5、bc=(ab)c=a(bc)3.減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。即ab=a()b兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。1.多個不為0的數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積為正數(shù);負因數(shù)的個數(shù)是奇數(shù)時,積為負數(shù),即先確定符號,再把絕對值相乘,絕對值的積就是積的絕對值。多個數(shù)相乘,若其中有因數(shù)0,則積等于0;反之,若積為0,則至少有一個因數(shù)是0。2.乘法運算律:三個乘法交換律:兩數(shù)相乘,交換因數(shù)的位置,積相等。即a3bba。九、乘除法 乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。即a3b3ca3b3ca3b3c。乘法分配律:一個

6、數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,在把積相加。即a3bca3ba3c。3.除法法則:三個除以一個(不等于0)的數(shù),等于乘這個數(shù)的倒數(shù)。兩個數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。四則運算法則:先乘除,后加減,有括號先算括號里的。1.概念:求n個相同因數(shù)的積得運算,叫做乘方。乘方的結(jié)果叫做冪。一個數(shù)可以看做這個數(shù)本身的一次方。2.法則:先確定冪的符號,然后再計算冪的絕對值。十、乘方負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)的任何正整數(shù)次冪都是03.混合運算法則:先乘方,再乘除,最后加減。同級運算,從左到右的順序進行。如有括號,先算括號內(nèi)的運算

7、,按小括號,中括號,大括號依次進行。在進行有理數(shù)的運算時,要分兩步走:先確定符號,再求值。10的數(shù)表示成a310n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n為正整數(shù))。這種記數(shù)的方法叫做科學(xué)記數(shù)法。1|a|10注:一個n為數(shù)用科學(xué)記數(shù)法表示為a310n1精確到某位或精確到小數(shù)點后某位。保留幾個有效數(shù)字十一、科學(xué)記數(shù)法 注:對于較大的數(shù)取近似數(shù)時,結(jié)果一般用科學(xué)記數(shù)法來表示。 例如:256000(精確到萬位)的結(jié)果是2.631050數(shù)字起,到末尾數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字。注:用科學(xué)記數(shù)法表示的近似數(shù)的有效數(shù)字時,只看乘號前面的數(shù)字。例如:3.03104的有效數(shù)字是3,0 。帶有記數(shù)單

8、位的近似數(shù)的有效數(shù)字,看記數(shù)單位前面的數(shù)字。例如:2.605萬的有效數(shù)字是2,6,0,5。第二章、整式的加減 一、代數(shù)式與有理式1、用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。 2、整式和分式統(tǒng)稱為有理式。3、含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。二、整式和分式1、沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。2、有除法運算并且除式中含有字母的有理式叫做分式。三、單項式與多項式1、沒有加減運算的整式叫做單項式。(數(shù)字與字母的積-包括單獨的一個數(shù)或字母)2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫

9、做常數(shù)項。說明:根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。 單項式1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。4、單獨一個數(shù)或一個字母也是單項式。5、只含有字母因式的單項式的系數(shù)是1或1。6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。7、單獨的一個非零常數(shù)的次數(shù)是0。8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。9、單項式的系數(shù)包括它前面的符號。篇

10、二:人教版七年級上冊數(shù)學(xué)課本知識點歸納人教版七年級上冊數(shù)學(xué)課本知識點歸納第一章有理數(shù)(一) 正負數(shù)1正數(shù):大于0的數(shù)。2負數(shù):小于0的數(shù)。30即不是正數(shù)也不是負數(shù)。4正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。(二)有理數(shù)1有理數(shù):由整數(shù)和分數(shù)組成的數(shù)。包括:正整數(shù)、0、負整數(shù),正分數(shù)、負分數(shù)??梢詫懗蓛蓚€整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:)2整數(shù):正整數(shù)、0、負整數(shù),統(tǒng)稱整數(shù)。3分數(shù):正分數(shù)、負分數(shù)。(三)數(shù)軸1數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向

11、右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點。)2數(shù)軸的三要素:原點、正方向、單位長度。3相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。4絕對值:正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負數(shù),絕對值大的反而小。(四)有理數(shù)的加減法1先定符號,再算絕對值。2加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。3加法交換律:a+b= b+ a 兩個數(shù)相加,交換加數(shù)的位置,和不變。4加法結(jié)合律:(a+b)+ c =

12、a +(b+ c )三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。5 a?b = a +(?b) 減去一個數(shù),等于加這個數(shù)的相反數(shù)。(五)有理數(shù)乘法(先定積的符號,再定積的大?。?同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。2乘積是1的兩個數(shù)互為倒數(shù)。3乘法交換律:ab= b a4乘法結(jié)合律:(ab)c = a (b c)5乘法分配律:a(b +c)= a b+ ac(六)有理數(shù)除法1先將除法化成乘法,然后定符號,最后求結(jié)果。2除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。3兩數(shù)相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。(七)乘方1

13、求n個相同因數(shù)的積的運算,叫做乘方。寫作an 。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))2負數(shù)的奇數(shù)次冪是負數(shù),負數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。3同底數(shù)冪相乘,底不變,指數(shù)相加。4同底數(shù)冪相除,底不變,指數(shù)相減。(八)有理數(shù)的加減乘除混合運算法則1先乘方,再乘除,最后加減。2同級運算,從左到右進行。3如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。(九)科學(xué)記數(shù)法、近似數(shù)、有效數(shù)字。第二章 整式(一)整式1整式:單項式和多項式的統(tǒng)稱叫整式。2單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。3系數(shù);一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。

14、4。次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。5多項式:幾個單項式的和叫做多項式。6項:組成多項式的每個單項式叫做多項式的項。7常數(shù)項:不含字母的項叫做常數(shù)項。8多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。9同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。10合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。(二) 整式加減整式加減運算時,如果遇到括號先去括號,再合并同類項。1去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。如果括號外的

15、因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。2合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變第三章 一元一次方程分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。(一)方程:先設(shè)字母表示未知數(shù),然后根據(jù)相等關(guān)系,寫出含有未知數(shù)的等式叫方程。(二)一元一次方程。1一元一次方程:方程里只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程。2解:求出的方程中未知數(shù)的值叫做方程的解。(二)等式的性質(zhì)1等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。如果a=

16、b,那么ac= bc2等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。 如果a=b,那么ac= bc;如果a=b,(c?0),那么ac= bc。(三)解方程的步驟解一元一次方程的步驟:去分母、去括號、移項、合并同類項,未知數(shù)系數(shù)化為1。1去分母:把系數(shù)化成整數(shù)。2去括號3移項:把等式一邊的某項變號后移到另一邊。4合并同類項5系數(shù)化為1第四章圖形認識初步一、圖形認識初步1幾何圖形:把從實物中抽象出來的各種圖形的統(tǒng)稱。2平面圖形:有些幾何圖形的各部分都在同一平面內(nèi),這樣的圖形是平面圖形。3立體圖形:有些幾何圖形的各部分不都在同一平面內(nèi),這樣的圖形是立體圖形。4展開圖:有些立體圖形是由一些平

17、面圖形圍成的,將它們的表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。5點,線,面,體圖形是由點,線,面構(gòu)成的。篇三:人教版七年級數(shù)學(xué)上冊總復(fù)習(xí)知識點匯總七年級數(shù)學(xué)期末復(fù)習(xí)知識點歸納第一章有理數(shù)1.1 正數(shù)與負數(shù)正數(shù):大于0的數(shù)叫正數(shù)。(根據(jù)需要,有時在正數(shù)前面也加上“+”)負數(shù):在以前學(xué)過的0以外的數(shù)前面加上負號“”的數(shù)叫負數(shù)。與正數(shù)具有相反意義。0既不是正數(shù)也不是負數(shù)。0是正數(shù)和負數(shù)的分界,是唯一的中性數(shù)。注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等1.2 有理數(shù)1、有理數(shù)(1)整數(shù):正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);(2)分數(shù);正分數(shù)和負

18、分數(shù)統(tǒng)稱分數(shù);(3)有理數(shù):整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。有理數(shù)分類:兩種分類方法:正整數(shù) 正整數(shù)零 正有理數(shù)a、 有理數(shù) 負整數(shù)b、有理數(shù)正分數(shù)正分數(shù)負整數(shù)負有理數(shù)負分數(shù)負分數(shù)2、數(shù)軸(1)定義 :通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸;(2)數(shù)軸三要素:原點、正方向、單位長度;(3)原點:在直線上任取一個點表示數(shù)0,這個點叫做原點;(4)數(shù)軸上的點和有理數(shù)的關(guān)系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。3、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)4、絕對值:(1)數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記作|a

19、|。從幾何意義上講,數(shù)的絕對值是兩點間的距離。(2) 一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。1.3 有理數(shù)的加減法有理數(shù)加法法則:1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。3、一個數(shù)同0相加,仍得這個數(shù)。加法的交換律和結(jié)合律有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。1.4 有理數(shù)的乘除法有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;任何數(shù)同0相乘,都得0;乘積是1的兩個數(shù)互為倒數(shù)。乘法

20、交換律/結(jié)合律/分配律有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù);兩數(shù)相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數(shù),都得0。1.5 有理數(shù)的乘方1、求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪。在a的n次方中,a叫做底數(shù),n叫做指數(shù)。負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。(1)乘方的定義:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。讀作:a的n次方或 a的n次冪 (特例:平方、立方)2、有理數(shù)的混合運算法則:先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內(nèi)的運算,按小括號、中

21、括號、大括號依次進行。3、把一個大于10的數(shù)表示成a10的n次方的形式,使用的就是科學(xué)計數(shù)法,注意a的范圍為1a <10。4、從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字。四舍五入遵從精確到哪一位就從這一位的下一位開始,而不是從數(shù)字的末尾往前四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55.第二章整式的加減2.1 整式1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù). 單項式指的是數(shù)或字母的積的代數(shù)式單獨一個數(shù)或一個字母也是單項式因此,判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含

22、有加、減運算關(guān)系,其也不是單項式2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的每一項是否是單項式每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)最高的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)最高項的次數(shù),這里ab是次數(shù)最高項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式特別注意多項式的項包括它前面的性質(zhì)符號5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項式和多項式的每一項都包括它前面的符號。6、單項式和多項式統(tǒng)稱為整式。 332.2整式的加減1、同類項:所含字母相同,并且相

23、同字母的指數(shù)也相同的項。與字母前面的系數(shù)(0)無關(guān)。2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可同類項與系數(shù)大小、字母的排列順序無關(guān)3、合并同類項:把多項式中的同類項合并成一項??梢赃\用交換律,結(jié)合律和分配律。4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。6、整式加減的一般步驟:一去、二找、三合(1)如果遇到括號按去括號法則先去括號. (2)結(jié)合同類項. (3)合并同類項第三章一元一次方程3.1 一元一次方程1、方程是含有未知數(shù)的等式。2、方

24、程都只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。 注意:判斷一個方程是否是一元一次方程要抓住三點:1)未知數(shù)所在的式子是整式(方程是整式方程);2)化簡后方程中只含有一個未知數(shù);3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.3、解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。4、等式的性質(zhì): 1)等式兩邊同時加(或減)同一個數(shù)(或式子),結(jié)果仍相等;2)等式兩邊同時乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。注意:運用性質(zhì)時,一定要注意等號兩邊都要同時變;運用性質(zhì)2時,一定要注意0這個數(shù).3.2 、3.3解一元一次方程在實際解方程的過程中

25、,以下步驟不一定完全用上,有些步驟還需重復(fù)使用. 因此在解方程時還要注意以下幾點:去分母:在方程兩邊都乘以各分母的最小公倍數(shù),不要漏乘不含分母的項;分子是一個整體,去分母后應(yīng)加上括號;去分母與分母化整是兩個概念,不能混淆;去括號:遵從先去小括號,再去中括號,最后去大括號;不要漏乘括號的項;不要弄錯符號; 移項:把含有未知數(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號) 移項要變號;合并同類項:不要丟項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式;系數(shù)化為1::字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞

26、顛倒。3.4 實際問題與一元一次方程一概念梳理列一元一次方程解決實際問題的一般步驟是:審題,特別注意關(guān)鍵的字和詞的意義,弄清相關(guān)數(shù)量關(guān)系;設(shè)出未知數(shù)(注意單位);根據(jù)相等關(guān)系列出方程;解這個方程;檢驗并寫出答案(包括單位名稱)。一些固定模型中的等量關(guān)系及典型例題參照一元一次方程應(yīng)用題專練學(xué)案。二、思想方法(本單元常用到的數(shù)學(xué)思想方法小結(jié))建模思想:通過對實際問題中的數(shù)量關(guān)系的分析,抽象成數(shù)學(xué)模型,建立一元一次方程的思想. 方程思想:用方程解決實際問題的思想就是方程思想.化歸思想:解一元一次方程的過程,實質(zhì)上就是利用去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的

27、更簡單的方程來代替原來的方程,最后逐步把方程轉(zhuǎn)化為x=a的形式. 體現(xiàn)了化“未知”為“已知”的化歸思想.數(shù)形結(jié)合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數(shù)量關(guān)系,使問題中的數(shù)量關(guān)系很直觀地展示出來,體現(xiàn)了數(shù)形結(jié)合的優(yōu)越性.分類思想:在解含字母系數(shù)的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關(guān)方案設(shè)計的實際問題的過程中往往也要注意分類思想在過程中的運用.三、數(shù)學(xué)思想方法的學(xué)習(xí)1. 解一元一次方程時,要明確每一步過程都作什么變形,應(yīng)該注意什么問題.2. 尋找實際問題的數(shù)量關(guān)系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.3. 列方程解應(yīng)用題的檢驗包括兩個

28、方面:檢驗求得的結(jié)果是不是方程的解;是要判斷方程的解是否符合題目中的實際意義.四、一元一次方程典型例題m3例1. 已知方程2x+3x=5是一元一次方程,則.解:由一元一次方程的定義可知m3=1,解得m=4.或m3=0,解得m=3所以m=4或m=3警示:很多同學(xué)做到這種題型時就想到指數(shù)是1,從而寫成m=1,這里一定要注意x的指數(shù)是(m3).2例2. 已知x?2是方程ax(2a3)x+5=0的解,求a的值.解:x=2是方程ax(2a3)x+5=0的解將x=2代入方程,得 a(2)(2a3)(2)+5=0化簡,得 4a+4a6+5=0 a=221 8點撥:要想解決這道題目,應(yīng)該從方程的解的定義入手,方程的解就是使方程左右兩邊值相等的未知數(shù)的值,這樣把x=2代入方程,然后再解關(guān)于a的一元一次方程就可以了.例3. 解方程2(x+1)3(4x3)=9(1x).解:去括號,得 2x+212x+9=99x,移項,得 2+99=12x2x9x.合并同類項,得 2=x,即x=2.點撥:此題的一般解法是去括號后將所有的未知項移到方程的左邊,已知項移到方程的右邊,其實,我們在去括號后發(fā)現(xiàn)所有的未知項移到方程的左邊合并同類項后系數(shù)不為正,為了減少計算的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論