測(cè)試函數(shù)2D圖_第1頁(yè)
測(cè)試函數(shù)2D圖_第2頁(yè)
測(cè)試函數(shù)2D圖_第3頁(yè)
測(cè)試函數(shù)2D圖_第4頁(yè)
測(cè)試函數(shù)2D圖_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1、一維函數(shù) 一維單峰函數(shù) 一維多峰單全局最優(yōu)解函數(shù) 一維多峰多局部最優(yōu)解函數(shù) 2、二維函數(shù) 2.1二維單峰函數(shù) 2-2二維多峰單全局最優(yōu)解函數(shù) 2.2.1 SHUBERT FUNCTION Shubert Fund on x2 W1O /(X)= ( f i cos(” + 1)叼 + i) i=l Shutes Function zcos(i + 1)X2 + i) Description: Dimensions: 2 The Shubert function has several local minima and many global minima. The second plot

2、shows the the function on a smaller input domain, to allow for easier viewing. Input Domain: The function is usually evaluated on the square Xj G -10. 10, for all i = 1, 2, although this may be restricted to the square Xi G -5.12,5.12, for all i= 1,2. Global Minimum: /(x-) = 186.7309 Schwefel Functi

3、on n /(t)二 418.98288727243:加一龍叭 siii(VW) i=l Dimensions: n Domain: -500.0 航 500.0 Global Optirnuni: f(x) v 0.0 at x = (420.9687,420.9687,,420.9687) Operator: ScliwefelE valuator Char ts; 1600 1400 1200 1000 800 600 400 200 0 Figure 9: Schwefel function -500.0, 50(10. 2.2.2 EGGHOLDER FUNCTION Egghold

4、er Function 1500 1000 - 500 _ 0 一 600 -500 400 200 -200 400 200 400 -200 -400 -600 xl -600 x2 -1000 600 f(x)=(龍2 +47) sin - Hi sin (衍 + 47)|) Description: Dimensions: 2 The Eggholder function is a difficult function to optimize, because of the large number of local minima. Input Domain: Tlic functio

5、n is usually evaluated on the square x, G -512, 512, for all i = 1, 2 Global Minimum: f(xj = -959.6407, at = (512,404.2319) 2.2.3 Levy 5 test objective function. This class defines the Levy 5 global optimization problem. This is a multimodal minimization problem defined as follows: 55 /Lcvj05(x) =|(

6、i - 1)rri + 2 x 刀 J cos |(J + 1)2 + j + (ti + 1.42513)2 + (切 + 0.80032) i=ij=l Here, n represents the number of dimensions and xi -10,10 for 1 , a 4 j . Two-dimensional Levy 5 function Global optimum f) = 176禹75 for x = -1.3068,-1.42481 224 LANGERMANN FUNCTION fLangermann(X)=- 5 Ci cos(7T (T - aj2 +

7、 (x2 一 bi)2 2=1 (円一1,)24(工2 一坷尸 4 10 0 Description: Dimensions: d The Langermann function is multimodal, with many unevenly distributed local minima. The recommended values of m, c and A, as given by Molga a larger ni leads to a more difficult search The recommended value of m is m = 10. The functio

8、ns two-dimensional form is shown in the plot above Input Domain: The function is usually evaluated on the hypercube x】G 0, tt, for all i = 1,.d. Global Minima:at d = 2; f(x)=-1.8013, at x* = (2.20,1.57) at d = 5: /(x*) = 4.687658 at d= 10: /(x-) = -9.66015 多維多峰多局部最優(yōu)解函數(shù) STYBLINSKI-TANG FUNCTION Styblin$ki-Tang Function /(x)=扌 f (時(shí) - 1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論