版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、二次函數(shù)導(dǎo)學(xué)案26.1 二次函數(shù)及其圖像26.1.1 二次函數(shù)九年級(jí)下冊(cè) 編號(hào)01【學(xué)習(xí)目標(biāo)】1. 了解二次函數(shù)的相關(guān)概念2. 會(huì)確定二次函數(shù)關(guān)系式中各項(xiàng)的系數(shù)。3. 確定實(shí)際問題中二次函數(shù)的關(guān)系式?!緦W(xué)法指導(dǎo)】類比一次函數(shù),反比例函數(shù)來學(xué)習(xí)二次函數(shù),注意知識(shí)結(jié)構(gòu)的建立。【學(xué)習(xí)過程】一、知識(shí)鏈接:1.若在一個(gè)變化過程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值, y都有唯一的值與它對(duì)應(yīng),那么就說y是x的 ,x叫做 。2. 形如的函數(shù)是一次函數(shù),當(dāng)時(shí),它是 函數(shù);形如 的函數(shù)是反比例函數(shù)。二、自主學(xué)習(xí):1用16m長(zhǎng)的籬笆圍成長(zhǎng)方形圈養(yǎng)小兔,圈的面積y()與長(zhǎng)方形的長(zhǎng)x(m)之間的函數(shù)關(guān)系式為 。分析
2、:在這個(gè)問題中,可設(shè)長(zhǎng)方形生物園的長(zhǎng)為米,則寬為 米,如果將面積記為平方米,那么與之間的函數(shù)關(guān)系式為= ,整理為= .2.n支球隊(duì)參加比賽,每?jī)申?duì)之間實(shí)行一場(chǎng)比賽寫出比賽的場(chǎng)次數(shù)m與球隊(duì)數(shù)n之間的關(guān)系式_3.用一根長(zhǎng)為40的鐵絲圍成一個(gè)半徑為的扇形,求扇形的面積與它的半徑之間的函數(shù)關(guān)系式是 。4.觀察上述函數(shù)函數(shù)關(guān)系有哪些共同之處? 。5.歸納:一般地,形如 ,( )的函數(shù)為二次函數(shù)。其中是自變量,是_,b是_,c是_三、合作交流:(1)二次項(xiàng)系數(shù)為什么不等于0?答: 。(2)一次項(xiàng)系數(shù)和常數(shù)項(xiàng)能夠?yàn)?嗎?答: .四、跟蹤練習(xí)1觀察:;y200x2400x200;這六個(gè)式子中二次函數(shù)有 。(只
3、填序號(hào))2. 是二次函數(shù),則m的值為_3.若物體運(yùn)動(dòng)的路段s(米)與時(shí)間t(秒)之間的關(guān)系為,則當(dāng)t4秒時(shí),該物體所經(jīng)過的路程為 。4.二次函數(shù)當(dāng)x2時(shí),y3,則這個(gè)二次函數(shù)解析式為 5.為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長(zhǎng)25m)的空地上修建一個(gè)矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍?。ㄈ鐖D)若設(shè)綠化帶的BC邊長(zhǎng)為x m,綠化帶的面積為y m2求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍26.1.2二次函數(shù)的圖象九年級(jí)下冊(cè) 編號(hào)02【學(xué)習(xí)目標(biāo)】1知道二次函數(shù)的圖象是一條拋物線;2會(huì)畫二次函數(shù)yax2的圖象;3掌握二次函數(shù)yax2的性質(zhì),并會(huì)靈活應(yīng)
4、用(重點(diǎn))【學(xué)法指導(dǎo)】數(shù)形結(jié)合是學(xué)習(xí)函數(shù)圖象的精髓所在,一定要善于從圖象上學(xué)習(xí)理解函數(shù).【學(xué)習(xí)過程】一、知識(shí)鏈接:1.畫一個(gè)函數(shù)圖象的一般過程是 ; ; 。2.一次函數(shù)圖象的形狀是 ;反比例函數(shù)圖象的形狀是 .二、自主學(xué)習(xí)(一)畫二次函數(shù)yx2的圖象列表:x3210123yx2(3)在圖(3)中描點(diǎn),并連線(2)(1)1.思考:圖(1)和圖(2)中的連線準(zhǔn)確嗎?為什么?連線中我們應(yīng)該注意什么?答:2.歸納: 由圖象可知二次函數(shù)的圖象是一條曲線,它的形狀類似于投籃球時(shí)球在空中所經(jīng)過的路線,即拋出物體所經(jīng)過的路線,所以這條曲線叫做 線;拋物線是軸對(duì)稱圖形,對(duì)稱軸是 ;的圖象開口_; 與 的交點(diǎn)叫做
5、拋物線的頂點(diǎn)。拋物線的頂點(diǎn)坐標(biāo)是 ;它是拋物線的最 點(diǎn)(填“高”或“低”),即當(dāng)x=0時(shí),y有最 值等于0.在對(duì)稱軸的左側(cè),圖象從左往右呈 趨勢(shì),在對(duì)稱軸的右側(cè),圖象從左往右呈 趨勢(shì);即0時(shí),隨的增大而 。(二)例1在圖(4)中,畫出函數(shù),的圖象解:列表:x432101234x2-1.51-0.500.511.52(4)歸納:拋物線,的圖象的形狀都是 ;頂點(diǎn)都是_;對(duì)稱軸都是_;二次項(xiàng)系數(shù)_0;開口都 ;頂點(diǎn)都是拋物線的最_點(diǎn)(填“高”或“低”) 歸納:拋物線,的的圖象的形狀都是 ;頂點(diǎn)都是_;對(duì)稱軸都是_;二次項(xiàng)系數(shù)_0;開口都 ;頂點(diǎn)都是拋物線的最_點(diǎn)(填“高”或“低”) 例2 請(qǐng)?jiān)趫D(4
6、)中畫出函數(shù),的圖象列表:x-4-3-2-101234x3210123x2-1.51-0.500.511.52三、合作交流:歸納:拋物線的性質(zhì)圖象(草圖)對(duì)稱軸頂點(diǎn)開口方向有最高或最低點(diǎn)最值0當(dāng)x_時(shí),y有最_值,是_0當(dāng)x_時(shí),y有最_值,是_2.當(dāng)0時(shí),在對(duì)稱軸的左側(cè),即 0時(shí),隨的增大而 ;在對(duì)稱軸的右側(cè),即 0時(shí)隨的增大而 。3在前面圖(4)中,關(guān)于軸對(duì)稱的拋物線有 對(duì),它們分別是哪些?答: 。由此可知和拋物線關(guān)于軸對(duì)稱的拋物線是 。4當(dāng)0時(shí),越大,拋物線的開口越_;當(dāng)0時(shí), 越大,拋物線的開口越_;因此,越大,拋物線的開口越_。四、課堂訓(xùn)練1函數(shù)的圖象頂點(diǎn)是_,對(duì)稱軸是_,開口向_,
7、當(dāng)x_時(shí),有最_值是_2. 函數(shù)的圖象頂點(diǎn)是_,對(duì)稱軸是_,開口向_,當(dāng)x_時(shí),有最_值是_3. 二次函數(shù)的圖象開口向下,則m_4. 二次函數(shù)ymx有最高點(diǎn),則m_5. 二次函數(shù)y(k1)x2的圖象如圖所示,則k的取值范圍為_6若二次函數(shù)的圖象過點(diǎn)(1,2),則的值是_7如圖,拋物線 開口從小到大排列是_;(只填序號(hào))其中關(guān)于軸對(duì)稱的兩條拋物線是 和 。8點(diǎn)A(,b)是拋物線上的一點(diǎn),則b= ;過點(diǎn)A作x軸的平行線交拋物線另一點(diǎn)B的坐標(biāo)是 。9如圖,A、B分別為上兩點(diǎn),且線段ABy軸于點(diǎn)(0,6),若AB=6,則該拋物線的表達(dá)式為 。10. 當(dāng)m= 時(shí),拋物線開口向下11.二次函數(shù)與直線交于點(diǎn)
8、P(1,b)(1)求a、b的值;(2)寫出二次函數(shù)的關(guān)系式,并指出x取何值時(shí),該函數(shù)的y隨x的增大而減小26.1.3 二次函數(shù)的圖象(一)九年級(jí)下冊(cè) 編號(hào)03【學(xué)習(xí)目標(biāo)】1知道二次函數(shù)與的聯(lián)系2.掌握二次函數(shù)的性質(zhì),并會(huì)應(yīng)用;【學(xué)法指導(dǎo)】類比一次函數(shù)的平移和二次函數(shù)的性質(zhì)學(xué)習(xí),要構(gòu)建一個(gè)知識(shí)體系?!緦W(xué)習(xí)過程】一、知識(shí)鏈接:直線可以看做是由直線 得到的。練:若一個(gè)一次函數(shù)的圖象是由平移得到,并且過點(diǎn)(-1,3),求這個(gè)函數(shù)的解析式。解:由此你能推測(cè)二次函數(shù)與的圖象之間又有何關(guān)系嗎?猜想: 。x3210123二、自主學(xué)習(xí)1.填表:開口方向頂點(diǎn)對(duì)稱軸有最高(低)點(diǎn)增減性(一)在同一直角坐標(biāo)系中,畫出
9、二次函數(shù),的圖象2可以發(fā)現(xiàn),把拋物線向_平移_個(gè)單位,就得到拋物線;把拋物線向_平移_個(gè)單位,就得到拋物線.3拋物線,的形狀_開口大小相同。三、知識(shí)梳理:(一)拋物線特點(diǎn):1.當(dāng)時(shí),開口向 ;當(dāng)時(shí),開口 ;2. 頂點(diǎn)坐標(biāo)是 ;3. 對(duì)稱軸是 。(二)拋物線與形狀相同,位置不同,是由 平移得到的。(填上下或左右)二次函數(shù)圖象的平移規(guī)律:上 下 。(三)的正負(fù)決定開口的 ;決定開口的 ,即不變,則拋物線的形狀 。因?yàn)槠揭茮]有改變拋物線的開口方向和形狀,所以平移前后的兩條拋物線值 。三、跟蹤練習(xí):1.拋物線向上平移3個(gè)單位,就得到拋物線_;拋物線向下平移4個(gè)單位,就得到拋物線_2拋物線向上平移3個(gè)單
10、位后的解析式為 ,它們的形狀_,當(dāng)= 時(shí),有最 值是 。3由拋物線平移,且經(jīng)過(1,7)點(diǎn)的拋物線的解析式是 ,是把原拋物線向 平移 個(gè)單位得到的。4. 寫出一個(gè)頂點(diǎn)坐標(biāo)為(0,3),開口方向與拋物線的方向相反,形狀相同的拋物線解析式_5. 拋物線關(guān)于x軸對(duì)稱的拋物線解析式為_6.二次函數(shù)的經(jīng)過點(diǎn)A(1,-1)、B(2,5).求該函數(shù)的表達(dá)式;若點(diǎn)C(-2,),D(,7)也在函數(shù)的上,求、的值。26.1.3 二次函數(shù)的圖象(二)九年級(jí)下冊(cè) 編號(hào)04【學(xué)習(xí)目標(biāo)】1會(huì)畫二次函數(shù)的圖象;2.知道二次函數(shù)與的聯(lián)系3.掌握二次函數(shù)的性質(zhì),并會(huì)應(yīng)用;【學(xué)習(xí)過程】一、知識(shí)鏈接:1.將二次函數(shù)的圖象向上平移2
11、個(gè)單位,所得圖象的解析式為 。2.將拋物線的圖象向下平移3個(gè)單位后的拋物線的解析式為 。二、自主學(xué)習(xí)畫出二次函數(shù),的圖象;先列表:432101234歸納:(1)的開口向 ,對(duì)稱軸是直線 ,頂點(diǎn)坐標(biāo)是 。圖象有最 點(diǎn),即= 時(shí),有最 值是 ;在對(duì)稱軸的左側(cè),即 時(shí),隨的增大而 ;在對(duì)稱軸的右側(cè),即 時(shí)隨的增大而 。 可以看作由向 平移 個(gè)單位形成的。(2)的開口向 ,對(duì)稱軸是直線 ,頂點(diǎn)坐標(biāo)是 , 圖象有最 點(diǎn),即= 時(shí),有最 值是 ;在對(duì)稱軸的左側(cè),即 時(shí),隨的增大而 ;在對(duì)稱軸的右側(cè),即 時(shí)隨的增大而 ??梢钥醋饔上?平移 個(gè)單位形成的。三、知識(shí)梳理(一)拋物線特點(diǎn):1.當(dāng)時(shí),開口向 ;當(dāng)時(shí)
12、,開口 ;2. 頂點(diǎn)坐標(biāo)是 ;3. 對(duì)稱軸是直線 。(二)拋物線與形狀相同,位置不同,是由 平移得到的。(填上下或左右)結(jié)合學(xué)案和課本第8頁可知二次函數(shù)圖象的平移規(guī)律:左 右 ,上 下 。(三)的正負(fù)決定開口的 ;決定開口的 ,即不變,則拋物線的形狀 。因?yàn)槠揭茮]有改變拋物線的開口方向和形狀,所以平移前后的兩條拋物線值 。四、課堂訓(xùn)練1拋物線的開口_;頂點(diǎn)坐標(biāo)為_;對(duì)稱軸是直線_;當(dāng) 時(shí),隨的增大而減??;當(dāng) 時(shí),隨的增大而增大。2. 拋物線的開口_;頂點(diǎn)坐標(biāo)為_;對(duì)稱軸是直線_;當(dāng) 時(shí),隨的增大而減?。划?dāng) 時(shí),隨的增大而增大。3. 拋物線的開口_;頂點(diǎn)坐標(biāo)為_;對(duì)稱軸是_;4.拋物線向右平移4
13、個(gè)單位后,得到的拋物線的表達(dá)式為_5. 拋物線向左平移3個(gè)單位后,得到的拋物線的表達(dá)式為_6將拋物線向右平移1個(gè)單位后,得到的拋物線解析式為_7拋物線與y軸的交點(diǎn)坐標(biāo)是_,與x軸的交點(diǎn)坐標(biāo)為_8. 寫出一個(gè)頂點(diǎn)是(5,0),形狀、開口方向與拋物線都相同的二次函數(shù)解析式_26.1.3二次函數(shù)的圖象(三)九年級(jí)下冊(cè) 編號(hào)05【學(xué)習(xí)目標(biāo)】1會(huì)畫二次函數(shù)的頂點(diǎn)式的圖象;2掌握二次函數(shù)的性質(zhì);【學(xué)習(xí)過程】一、知識(shí)鏈接:1.將二次函數(shù)的圖象向上平移2個(gè)單位,所得圖象的解析式為 。2.將拋物線的圖象向左平移3個(gè)單位后的拋物線的解析式為 。二、自主學(xué)習(xí)在右圖中做出的圖象:觀察:1. 拋物線開口向 ;頂點(diǎn)坐標(biāo)是
14、 ;對(duì)稱軸是直線 。2. 拋物線和的形狀 ,位置 。(填“相同”或“不同”)3. 拋物線是由如何平移得到的?答: 。三、合作交流平移前后的兩條拋物線值變化嗎?為什么?答: 。四、知識(shí)梳理結(jié)合上圖和課本第9頁例3歸納:(一)拋物線的特點(diǎn):1.當(dāng)時(shí),開口向 ;當(dāng)時(shí),開口 ;2. 頂點(diǎn)坐標(biāo)是 ;3. 對(duì)稱軸是直線 。(二)拋物線與形狀 ,位置不同,是由平移得到的。二次函數(shù)圖象的平移規(guī)律:左 右 ,上 下 。(三)平移前后的兩條拋物線值 。五、跟蹤訓(xùn)練1.二次函數(shù)的圖象可由的圖象( )A.向左平移1個(gè)單位,再向下平移2個(gè)單位得到 B.向左平移1個(gè)單位,再向上平移2個(gè)單位得到C.向右平移1個(gè)單位,再向下
15、平移2個(gè)單位得到 D.向右平移1個(gè)單位,再向上平移2個(gè)單位得到2.拋物線開口 ,頂點(diǎn)坐標(biāo)是 ,對(duì)稱軸是 ,當(dāng)x 時(shí),y有最 值為 。開口方向頂點(diǎn)對(duì)稱軸3.填表:4.函數(shù)的圖象可由函數(shù)的圖象沿x軸向 平移 個(gè)單位,再沿y軸向 平移 個(gè)單位得到。5.若把函數(shù)的圖象分別向下、向左移動(dòng)2個(gè)單位,則得到的函數(shù)解析式為 。6. 頂點(diǎn)坐標(biāo)為(2,3),開口方向和大小與拋物線相同的解析式為( )A B CD7.一條拋物線的形狀、開口方向與拋物線相同,對(duì)稱軸和拋物線相同,且頂點(diǎn)縱坐標(biāo)為0,求此拋物線的解析式.26.1.3二次函數(shù)的圖象(四)九年級(jí)下冊(cè) 編號(hào)06【學(xué)習(xí)目標(biāo)】會(huì)用二次函數(shù)的性質(zhì)解決問題;【學(xué)習(xí)過程】
16、一、知識(shí)鏈接:1.拋物線開口向 ,頂點(diǎn)坐標(biāo)是 ,對(duì)稱軸是 ,當(dāng)x 時(shí),y有最 值為 。當(dāng) 時(shí),隨的增大而增大.2. 拋物線是由如何平移得到的?答: 。二、自主學(xué)習(xí)1.拋物線的頂點(diǎn)坐標(biāo)為(2,-3),且經(jīng)過點(diǎn)(3,2)求該函數(shù)的解析式?分析:如何設(shè)函數(shù)解析式?寫出完整的解題過程。2.仔細(xì)閱讀課本第10頁例4:分析:由題意可知:池中心是 ,水管是 ,點(diǎn) 是噴頭,線段 的長(zhǎng)度是1米,線段 的長(zhǎng)度是3米。由已知條件可設(shè)拋物線的解析式為 。拋物線的解析式中有一個(gè)待定系數(shù),所以只需再確定 個(gè)點(diǎn)的坐標(biāo)即可,這個(gè)點(diǎn)是 。求水管的長(zhǎng)就是通過求點(diǎn) 的 坐標(biāo)。二、跟蹤練習(xí):如圖,某隧道橫截面的上下輪廓線分別由拋物線
17、對(duì)稱的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米. AO= 3米,現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.(1) 直接寫出點(diǎn)A及拋物線頂點(diǎn)P的坐標(biāo);(2) 求出這條拋物線的函數(shù)解析式;三、能力拓展1.知識(shí)準(zhǔn)備如圖拋物線與軸交于A,B兩點(diǎn),交軸于點(diǎn)D,拋物線的頂點(diǎn)為點(diǎn)C(1) 求ABD的面積。(2) 求ABC的面積。(3) 點(diǎn)P是拋物線上一動(dòng)點(diǎn),當(dāng)ABP的面積為4時(shí),求所有符合條件的點(diǎn)P的坐標(biāo)。(4) 點(diǎn)P是拋物線上一動(dòng)點(diǎn),當(dāng)ABP的面積為8時(shí),求所有符合條件的點(diǎn)P的坐標(biāo)。(5) 點(diǎn)P是拋物線上一動(dòng)點(diǎn),當(dāng)ABP的面積為10時(shí),求所有符合條件的點(diǎn)P的坐標(biāo)。2.如圖,在平面
18、直角坐標(biāo)系中,圓M經(jīng)過原點(diǎn)O,且與軸、軸分別相交于兩點(diǎn)(1)求出直線AB的函數(shù)解析式;(2)若有一拋物線的對(duì)稱軸平行于軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;(3)設(shè)(2)中的拋物線交軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由(2)26.1.4二次函數(shù)的圖象九年級(jí)下冊(cè) 編號(hào)07【學(xué)習(xí)目標(biāo)】1.能通過配方把二次函數(shù)化成的形式,從而確定開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。2熟記二次函數(shù)的頂點(diǎn)坐標(biāo)公式;3會(huì)畫二次函數(shù)一般式的圖象【學(xué)習(xí)過程】一、知識(shí)鏈接:1.拋物線的頂點(diǎn)坐標(biāo)是 ;對(duì)稱軸是直線 ;當(dāng)= 時(shí)有最 值是 ;當(dāng) 時(shí),
19、隨的增大而增大;當(dāng) 時(shí),隨的增大而減小。2. 二次函數(shù)解析式中,很容易確定拋物線的頂點(diǎn)坐標(biāo)為 ,所以這種形式被稱作二次函數(shù)的頂點(diǎn)式。二、自主學(xué)習(xí):(一)、問題:(1)你能直接說出函數(shù) 的圖像的對(duì)稱軸和頂點(diǎn)坐標(biāo)嗎? (2)你有辦法解決問題(1)嗎?解:的頂點(diǎn)坐標(biāo)是 ,對(duì)稱軸是 .(3)像這樣我們可以把一個(gè)一般形式的二次函數(shù)用 的方法轉(zhuǎn)化為 式從而直接得到它的圖像性質(zhì).(4)用配方法把下列二次函數(shù)化成頂點(diǎn)式: (5)歸納:二次函數(shù)的一般形式可以用配方法轉(zhuǎn)化成頂點(diǎn)式: ,因此拋物線的頂點(diǎn)坐標(biāo)是 ;對(duì)稱軸是 ,(6)用頂點(diǎn)坐標(biāo)和對(duì)稱軸公式也可以直接求出拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸,這種方法叫做公式法。 用
20、公式法寫出下列拋物線的開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo)。 (二)、用描點(diǎn)法畫出的圖像.(1)頂點(diǎn)坐標(biāo)為 ;(2)列表:頂點(diǎn)坐標(biāo)填在 ;(列表時(shí)一般以對(duì)稱軸為中心,對(duì)稱取值) (3)描點(diǎn),并連線: (4)觀察:圖象有最 點(diǎn),即= 時(shí),有最 值是 ; 時(shí),隨的增大而增大; 時(shí)隨的增大而減小。該拋物線與軸交于點(diǎn) 。該拋物線與軸有 個(gè)交點(diǎn).三、合作交流求出頂點(diǎn)的橫坐標(biāo)后,可以用哪些方法計(jì)算頂點(diǎn)的縱坐標(biāo)?計(jì)算并比較。26.1.5用待定系數(shù)法求二次函數(shù)的解析式九年級(jí)下冊(cè) 編號(hào)08【學(xué)習(xí)目標(biāo)】1.能根據(jù)已知條件選擇合適的二次函數(shù)解析式;2.會(huì)用待定系數(shù)法求二次函數(shù)的解析式?!緦W(xué)習(xí)過程】一、知識(shí)鏈接:已知拋物線的頂
21、點(diǎn)坐標(biāo)為(-1,2),且經(jīng)過點(diǎn)(0,4)求該函數(shù)的解析式.解:二、自主學(xué)習(xí)1.一次函數(shù)經(jīng)過點(diǎn)A(-1,2)和點(diǎn)B(2,5),求該一次函數(shù)的解析式。分析:要求出函數(shù)解析式,需求出的值,因?yàn)橛袃蓚€(gè)待定系數(shù),所以需要知道兩個(gè)點(diǎn)的坐標(biāo),列出關(guān)于的二元一次方程組即可。解:2. 已知一個(gè)二次函數(shù)的圖象過(1,5)、()、(2,11)三點(diǎn),求這個(gè)二次函數(shù)的解析式。分析:如何設(shè)函數(shù)解析式?頂點(diǎn)式還是一般式?答: ;所設(shè)解析式中有 個(gè)待定系數(shù),它們分別是 ,所以一般需要 個(gè)點(diǎn)的坐標(biāo);請(qǐng)你寫出完整的解題過程。解:三、知識(shí)梳理用待定系數(shù)法求二次函數(shù)的解析式通常用以下2種方法:設(shè)頂點(diǎn)式和一般式。1已知拋物線過三點(diǎn),通
22、常設(shè)函數(shù)解析式為 ; 2已知拋物線頂點(diǎn)坐標(biāo)及其余一點(diǎn),通常設(shè)函數(shù)解析式為 。四、跟蹤練習(xí):1已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為(2,3),且圖像過點(diǎn)(3,1),求這個(gè)二次函數(shù)的解析式2.已知二次函數(shù)的圖象過點(diǎn)(1,2),則的值為_3.一個(gè)二次函數(shù)的圖象過(0,1)、(1,0)、(2,3)三點(diǎn),求這個(gè)二次函數(shù)的解析式。4. 已知雙曲線與拋物線交于A(2,3)、B(,2)、c(3, )三點(diǎn). (1)求雙曲線與拋物線的解析式; (2)在平面直角坐標(biāo)系中描出點(diǎn)A、點(diǎn)B、點(diǎn)C,并求出ABC的面積,5.如圖,直線交軸于點(diǎn)A,交軸于點(diǎn)B,過A,B兩點(diǎn)的拋物線交軸于另一點(diǎn)C(3,0),(1)求該拋物線的解析式;
23、在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使ABQ是等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.26.2用函數(shù)觀點(diǎn)看一元二次方程(一)九年級(jí)下冊(cè) 編號(hào)09【學(xué)習(xí)目標(biāo)】1、 體會(huì)二次函數(shù)與方程之間的聯(lián)系。2、 理解二次函數(shù)圖象與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,【學(xué)習(xí)過程】一、知識(shí)鏈接:1.直線與軸交于點(diǎn) ,與軸交于點(diǎn) 。2.一元二次方程,當(dāng) 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng) 時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng) 時(shí),方程沒有實(shí)數(shù)根;二、自主學(xué)習(xí)1.解下列方程(1) (2) (3)2.觀察二次函數(shù)的圖象,寫出它們與軸的交點(diǎn)坐標(biāo):函數(shù)圖 象交點(diǎn)與軸交點(diǎn)坐標(biāo)是 與軸交點(diǎn)坐標(biāo)是
24、與軸交點(diǎn)坐標(biāo)是 3.對(duì)比第1題各方程的解,你發(fā)現(xiàn)什么? 三、知識(shí)梳理:一元二次方程的實(shí)數(shù)根就是對(duì)應(yīng)的二次函數(shù)與軸交點(diǎn)的 .(即把代入)二次函數(shù)與一元二次方程的關(guān)系如下:(一元二次方程的實(shí)數(shù)根記為)二次函數(shù)與一元二次方程 與軸有 個(gè)交點(diǎn) 0,方程有 的實(shí)數(shù)根與軸有 個(gè)交點(diǎn);這個(gè)交點(diǎn)是 點(diǎn) 0,方程有 實(shí)數(shù)根與軸有 個(gè)交點(diǎn) 0,方程 實(shí)數(shù)根.二次函數(shù)與軸交點(diǎn)坐標(biāo)是 .四、跟蹤練習(xí)1. 二次函數(shù),當(dāng)1時(shí),_;當(dāng)0時(shí),_2拋物線與軸的交點(diǎn)坐標(biāo)是 ,與軸的交點(diǎn)坐標(biāo)是 ;3.二次函數(shù),當(dāng)_時(shí),3(5)(4)4.如圖,一元二次方程的解為 。5.如圖,一元二次方程的解為 。6. 已知拋物線的頂點(diǎn)在x軸上,則_
25、7已知拋物線與軸有兩個(gè)交點(diǎn),則的取值范圍是_ 26.2用函數(shù)觀點(diǎn)看一元二次方程(二)九年級(jí)下冊(cè) 編號(hào)10【學(xué)習(xí)目標(biāo)】1. 能根據(jù)圖象判斷二次函數(shù)的符號(hào);2.能根據(jù)圖象判斷一些特殊方程或不等式是否成立。【學(xué)習(xí)過程】一、知識(shí)鏈接:根據(jù)的圖象和性質(zhì)填表:(的實(shí)數(shù)根記為)(1)拋物線與軸有兩個(gè)交點(diǎn) 0;(2)拋物線與軸有一個(gè)交點(diǎn) 0;(3)拋物線與軸沒有交點(diǎn) 0.二、自主學(xué)習(xí):1.拋物線和拋物線與軸的交點(diǎn)坐標(biāo)分別是 和 。拋物線與軸的交點(diǎn)坐標(biāo)分別是 .2.拋物線 開口向上,所以可以判斷 。 對(duì)稱軸是直線= ,由圖象可知對(duì)稱軸在軸的右側(cè),則0,即 0,已知 0,所以可以判定 0. 因?yàn)閽佄锞€與軸交于正半
26、軸,所以 0. 拋物線與軸有兩個(gè)交點(diǎn),所以 0;三、知識(shí)梳理:的符號(hào)由 決定:開口向 0;開口向 0.的符號(hào)由 決定: 在軸的左側(cè) ; 在軸的右側(cè) ; 是軸 0.的符號(hào)由 決定:點(diǎn)(0,)在軸正半軸 0;點(diǎn)(0,)在原點(diǎn) 0; 點(diǎn)(0,)在軸負(fù)半軸 0.的符號(hào)由 決定:拋物線與軸有 交點(diǎn) 0 方程有 實(shí)數(shù)根;拋物線與軸有 交點(diǎn) 0 方程有 實(shí)數(shù)根;拋物線與軸有 交點(diǎn) 0 方程 實(shí)數(shù)根; 特別的,當(dāng)拋物線與x軸只有一個(gè)交點(diǎn)時(shí),這個(gè)交點(diǎn)就是拋物線的 點(diǎn).四、典型例題:拋物線如圖所示:看圖填空:(1)_0;(2) 0;(3) 0;(4) 0 ;(5)_0;(6);(7);(8);(9)五、跟蹤練習(xí):
27、1.利用拋物線圖象求解一元二次方程及二次不等式 (1)方程的根為_;(2)方程的根為_;(3)方程的根為_;(4)不等式的解集為_;(5)不等式的解集為_ _;2.根據(jù)圖象填空:(1)_0;(2) 0;(3) 0;(4) 0 ;(5)_0;(6);(7);相似導(dǎo)學(xué)案27.1圖形的相似(第1課時(shí))【學(xué)習(xí)目標(biāo)】1. 經(jīng)歷探究圖形的形狀、大小,圖形的邊、角之間的關(guān)系,掌握相似多邊形的定義以及相似比,并能根據(jù)定義判斷兩個(gè)多邊形是否是相似多邊形 2. 掌握相似多邊形的定義、表示法,并能根據(jù)定義判斷兩個(gè)多邊形是否相似3能根據(jù)相似比進(jìn)行有關(guān)計(jì)算【自學(xué)指導(dǎo)】第一節(jié)1相似三角形的定義及記法三角對(duì)應(yīng)相等,三邊對(duì)應(yīng)
28、成比例的兩個(gè)三角形叫做相似三角形如ABC與DEF相似,記作ABCDEF。注意:其中對(duì)應(yīng)頂點(diǎn)要寫在對(duì)應(yīng)位置,如A與D,B與E,C與F相對(duì)應(yīng)ABDE等于相似比2想一想如果ABCDEF,那么哪些角是對(duì)應(yīng)角?哪些邊是對(duì)應(yīng)邊?對(duì)應(yīng)角有什么關(guān)系?對(duì)應(yīng)邊呢?3議一議(1)兩個(gè)全等三角形一定相似嗎?為什么?(2)兩個(gè)直角三角形一定相似嗎??jī)蓚€(gè)等腰直角三角形呢?為什么?(3)兩個(gè)等腰三角形一定相似嗎??jī)蓚€(gè)等邊三角形呢?為什么?歸納:【典例分析】例1:有一塊呈三角形形狀的草坪,其中一邊的長(zhǎng)是20m,在這個(gè)草坪的圖紙上,這條邊長(zhǎng)5cm,其他兩邊的長(zhǎng)都是3.5cm,求該草坪其他兩邊的實(shí)際長(zhǎng)度(14m)例2:如圖,已知
29、ABCADE,AE50cm,EC30cm,BC70cm,BAC45,ACB40,求(1)AED和ADE的度數(shù);(2)DE的長(zhǎng)5想一想:在例2的條件下,圖中有哪些線段成比例?練習(xí):等腰直角三角形ABC與等腰直角三角形ABC相似,相似比為31,已知斜邊AB5cm,求ABC斜邊AB上的高(第2課時(shí))【自學(xué)指導(dǎo)】第二節(jié)1、 相似多邊形的定義:兩個(gè)多邊形大小不等,但各角 ,各邊 這樣的兩個(gè)相似多邊形叫做相似多邊形。注意:與相似三角形的定義的不同點(diǎn)。2、 叫做相似比。3、判斷:(1)各角都對(duì)應(yīng)相等的兩個(gè)多邊形是相似多邊形。( )(2)各邊對(duì)應(yīng)成比例的兩個(gè)多邊形是相似多邊形。( )思考:要判斷兩個(gè)相似多邊形
30、相似需要滿足的條件 。4、觀察下列圖形,它們之間是否相似?【嘗試練習(xí)】5、判斷:(1)所有的正三角形都相似。 ( )(2)所有正方形都相似。 ( )(3)所有正五邊形都相似。 ( )(4)所有正多邊形都相似。 ( )思考:所有的正n邊形都相似嗎?【鞏固訓(xùn)練】1、 已知菱形ABCD與菱形ABCD,若使菱形ABCD菱形ABCD,可添加一個(gè)條件 2、 如圖,一個(gè)長(zhǎng)3米,寬1.5米的矩形黑板,其外圍的木質(zhì)邊匡寬75厘米。邊框內(nèi)外邊緣所成的矩形相似嗎?為什么? 3、 四邊形ABCD四邊形ABCD,A=75,B=85,D=118,AD=18, AD=8, AB=12.求C的度數(shù)和AB的長(zhǎng)度。CDCA B
31、A BD 【達(dá)標(biāo)測(cè)試】如上圖,已知四邊形ABCD四邊形ABCD,A=70,B=60, D=125 ,AD=7, AD=4.2,BC=8,求C的度數(shù)和BC的長(zhǎng)度?!鹃_拓思維 】在相似多邊形中,對(duì)應(yīng)對(duì)角線的比與相似比有何關(guān)系?怎樣證明? CDCA B A BD 27.2相似三角形(第3課時(shí))【學(xué)習(xí)目標(biāo)】1、掌握相似三角形的判定方法,理解相似三角形的性質(zhì),2、能對(duì)三角形的性質(zhì)與判定進(jìn)行簡(jiǎn)單的運(yùn)用【自學(xué)指導(dǎo)】判定1、相似三角形的判定方法、平行于三角形一邊的直線和其他兩邊相交,所構(gòu)成的三角形與原三角形相似.、三邊對(duì)應(yīng)成比例,兩三角形相似.、兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似.、兩角對(duì)應(yīng)相等,兩三角形
32、相似?!緡L試練習(xí)】、如圖,ABC與ADE都是等腰三角形,AD=AE,AB=AC,DAB=CAE。求證:ABCADE。、如圖ABCD是正方形,E是CD上一點(diǎn),F(xiàn)是BC延長(zhǎng)線上一點(diǎn),且CE=CF,BE延長(zhǎng)線交DF于G。求證:BGFDGE。、如圖已知點(diǎn)D為斜邊BA上的點(diǎn),點(diǎn)E為AC的中點(diǎn),分別延長(zhǎng)ED和CB交于F。求證:CDFDBF。、如圖ABC中,C,B的平分線相交于O,過O作AO的垂線與邊AB、AC分別交于D、E,求證:BDOBOCOEC。、如圖AD為ABC的A的平分線,由D向C的外角平分線作垂線與AC的延長(zhǎng)線交于F點(diǎn),由D作B的平分線的垂線與AB交于E,求證:ADEAFD。反思:兩個(gè)直角三角形
33、要相似,除了一個(gè)直角外,還需要那些條件就可以?!舅季S拓展】:要做兩個(gè)形狀相同的三角形框架,其中一個(gè)三角形框架的三邊的長(zhǎng)分別為4、5、6,另一個(gè)三角形的一邊長(zhǎng)為2,怎樣選料可使這兩個(gè)三角形相似?(第4課時(shí))【自學(xué)指導(dǎo)】性質(zhì)1、兩個(gè)三角形已知相似,可推出:、相似三角形對(duì)應(yīng)邊、對(duì)應(yīng)中線,對(duì)應(yīng)高線、對(duì)應(yīng)角平分線的比等于相似比、相似三角形周長(zhǎng)的比等于相似比、相似三角形面積的比等于相似比的平方【嘗試練習(xí)】1、如圖,在和中,的周長(zhǎng)是24,面積是48,求的周長(zhǎng)和面積.解:在和中, ,又 ,相似比為.的周長(zhǎng)為,的面積是.建議:記住上面的解題格式,規(guī)范你的步驟。2、如圖,已知中,點(diǎn)在上,(與點(diǎn)不重合),點(diǎn)在上.(
34、1)當(dāng)?shù)拿娣e與四邊形的面積相等時(shí),求的長(zhǎng).(2)當(dāng)?shù)闹荛L(zhǎng)與四邊形的周長(zhǎng)相等時(shí),求的長(zhǎng).(3)在上是否存在點(diǎn),使得為等腰直角三角形?要不存在,請(qǐng)說明理由;若存在,請(qǐng)求出的長(zhǎng).歸納:相似三角形的常見圖形及其變換: 【鞏固練習(xí)】1如圖 :ADBC,BAC=90,那么ABC 2下列條件中,判斷ABC與ABC是否相似?并說明理由.C=C=90,B=B=50.( )理由 .AB=AC,AB=AC,B=B. ( )理由 .B=B,. ( )理由 .A=A,. ( )理由 .3如圖,要使AEFACB,已具備的條件是 ,還需補(bǔ)充的條件是 或 或 . 4點(diǎn)P是ABC邊AB上一點(diǎn),且AB垂直AC,過點(diǎn)P作直線截AB
35、C,使截得三角形與ABC相似,滿足這樣條件得直線有( )條。 A、1 B、2 C、3 D、45如圖:已知ABC與ADE的邊BC、AD相交于點(diǎn)O,且1=2=3。求證:(1)ABOCDO;(2)ABCADE6如圖,AD、BC交于點(diǎn)O,BA、DC的延長(zhǎng)線交于點(diǎn)P, PAPB=PCPD.試說明:PBCPDA; AOBCOD. 7、 ABC的三邊之比為3:5:6,與其相似的DEF的最長(zhǎng)邊是24cm,那么它的周長(zhǎng)是 。8、如右圖,ABD=C,AB=5,AD=3.5,則AC=( )A B C D 9、如圖,B、C在ADE的邊AD、AE上,且AC=6,AB=5,EC=4,DB=7,則BC:DE= .10、如果
36、兩個(gè)相似三角形的相似比是,那么它們的周長(zhǎng)的比是( ),高之比是( ),面積比是( ) A、 B、C、 D、11、在ABC中,C900,CD是高。 (1)、寫出圖中所有與ABC相似的三角形。 (2)、試證明:12、有一塊三角形的土地,它的底邊BC100米,高AH80米。某單位要沿著地邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上。若大樓的寬是40米(即DE40米),求這個(gè)矩形的面積。 27.3 位似(第5課時(shí))【學(xué)習(xí)目標(biāo)】1、了解位似圖形的定義,知道位似圖形的性質(zhì),并能判斷哪些圖形是位似圖形;2、能利用坐標(biāo)變換作位似圖形,并利用作位似圖形的方法將一個(gè)圖形放大或縮小?!咀詫W(xué)指導(dǎo)】
37、1、請(qǐng)寫出位似圖形的定義2、位似圖形的性質(zhì) 位似圖形的對(duì)應(yīng)點(diǎn)和位似中心在一條直線上; 位似圖形的任意一對(duì)對(duì)應(yīng)頂點(diǎn)到位似中心的距離之比等于位似比; 位似一定相似,相似不一定位似; 位似圖形的對(duì)應(yīng)線段平行或在一條直線上?!镜淅治觥坷?:如圖,D,E分別AB,AC上的點(diǎn).(1)如果DEBC,那么ADE和 ABC是位似圖形嗎?為什么?(2)如果ADE和 ABC是位似圖形,那么DEBC嗎?為什么?ACBED歸納:具備什么條件就能判斷兩個(gè)圖形位似。、相似;、各對(duì)應(yīng)頂點(diǎn)的連線所在的直線交于一點(diǎn);、對(duì)應(yīng)線段平行或在同一條直線上。3、如何做位似圖形第一步:在原圖上找若干個(gè)關(guān)鍵點(diǎn),并任取一點(diǎn)作為位似中心。即選點(diǎn)第二步:將位似中心與各關(guān)鍵點(diǎn)連線。即連線第三步:在連線所在的直線上取關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn),使之滿足放縮比例。做對(duì)應(yīng)點(diǎn)第四步:順次連接截取點(diǎn)。即連線,最后,下結(jié)論。例2:將ABC作下列變化,請(qǐng)畫出相應(yīng)的圖形,并指出三個(gè)頂點(diǎn)的坐標(biāo)所發(fā)生的變化。(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 萬達(dá)商業(yè)廣場(chǎng)2024年物業(yè)綜合管理協(xié)議版B版
- 論文答辯精要解析
- 2025年度拆遷安置住房租賃及物業(yè)管理合同4篇
- 二零二五年度建筑工程項(xiàng)目建造師勞動(dòng)合同范本9篇
- 2025年度產(chǎn)教融合校企產(chǎn)學(xué)研合作項(xiàng)目執(zhí)行框架協(xié)議4篇
- 二零二五年度餐廳經(jīng)理勞動(dòng)合同范本:服務(wù)質(zhì)量提升3篇
- 二零二四年事業(yè)單位委托第三方社保代繳與員工績(jī)效獎(jiǎng)勵(lì)協(xié)議3篇
- 二零二五年度大米產(chǎn)品綠色包裝與環(huán)保材料應(yīng)用合同2篇
- 2024飼料行業(yè)客戶數(shù)據(jù)共享協(xié)議
- 2025年度商業(yè)地產(chǎn)項(xiàng)目場(chǎng)地租賃及物業(yè)管理合同12篇
- 國(guó)家自然科學(xué)基金項(xiàng)目申請(qǐng)書
- 電力電纜故障分析報(bào)告
- 中國(guó)電信網(wǎng)絡(luò)資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術(shù)試卷試題真題(答案詳解)
- 《品牌形象設(shè)計(jì)》課件
- 倉(cāng)庫(kù)管理基礎(chǔ)知識(shí)培訓(xùn)課件1
- 藥品的收貨與驗(yàn)收培訓(xùn)課件
- GH-T 1388-2022 脫水大蒜標(biāo)準(zhǔn)規(guī)范
- 高中英語人教版必修第一二冊(cè)語境記單詞清單
- 政府機(jī)關(guān)保潔服務(wù)投標(biāo)方案(技術(shù)方案)
- HIV感染者合并慢性腎病的治療指南
評(píng)論
0/150
提交評(píng)論