版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第2章 離散時(shí)間信號(hào)的表示及運(yùn)算2.1 實(shí)驗(yàn)?zāi)康膌 學(xué)會(huì)運(yùn)用MATLAB表示的常用離散時(shí)間信號(hào);l 學(xué)會(huì)運(yùn)用MATLAB實(shí)現(xiàn)離散時(shí)間信號(hào)的基本運(yùn)算。2.2 實(shí)驗(yàn)原理及實(shí)例分析2.2.1 離散時(shí)間信號(hào)在MATLAB中的表示離散時(shí)間信號(hào)是指在離散時(shí)刻才有定義的信號(hào),簡稱離散信號(hào),或者序列。離散序列通常用來表示,自變量必須是整數(shù)。離散時(shí)間信號(hào)的波形繪制在MATLAB中一般用stem函數(shù)。stem函數(shù)的基本用法和plot函數(shù)一樣,它繪制的波形圖的每個(gè)樣本點(diǎn)上有一個(gè)小圓圈,默認(rèn)是空心的。如果要實(shí)心,需使用參數(shù)“fill”、“filled”,或者參數(shù)“.”。由于MATLAB中矩陣元素的個(gè)數(shù)有限,所以MAT
2、LAB只能表示一定時(shí)間范圍內(nèi)有限長度的序列;而對(duì)于無限序列,也只能在一定時(shí)間范圍內(nèi)表示出來。類似于連續(xù)時(shí)間信號(hào),離散時(shí)間信號(hào)也有一些典型的離散時(shí)間信號(hào)。1. 單位取樣序列單位取樣序列,也稱為單位沖激序列,定義為 (12-1)要注意,單位沖激序列不是單位沖激函數(shù)的簡單離散抽樣,它在n=0處是取確定的值1。在MATLAB中,沖激序列可以通過編寫以下的impDT.m文件來實(shí)現(xiàn),即function y=impDT(n)y=(n=0); %當(dāng)參數(shù)為0時(shí)沖激為1,否則為0調(diào)用該函數(shù)時(shí)n必須為整數(shù)或整數(shù)向量?!緦?shí)例2-1】 利用MATLAB的impDT函數(shù)繪出單位沖激序列的波形圖。解:MATLAB源程序?yàn)閚
3、=-3:3;x=impDT(n);stem(n,x,fill),xlabel(n),grid ontitle(單位沖激序列)axis(-3 3 -0.1 1.1)圖2-1 單位沖激序列程序運(yùn)行結(jié)果如圖12-1所示。2. 單位階躍序列單位階躍序列定義為 (12-2)在MATLAB中,沖激序列可以通過編寫uDT.m文件來實(shí)現(xiàn),即function y=uDT(n)y=n=0; %當(dāng)參數(shù)為非負(fù)時(shí)輸出1調(diào)用該函數(shù)時(shí)n也同樣必須為整數(shù)或整數(shù)向量。【實(shí)例2-2】 利用MATLAB的uDT函數(shù)繪出單位階躍序列的波形圖。解:MATLAB源程序?yàn)閚=-3:5;x=uDT(n);stem(n,x,fill),xla
4、bel(n),grid ontitle(單位階躍序列)axis(-3 5 -0.1 1.1)圖2-2 單位階躍序列程序運(yùn)行結(jié)果如圖12-2所示。3. 矩形序列矩形序列定義為 (12-3)矩形序列有一個(gè)重要的參數(shù),就是序列寬度N。與之間的關(guān)系為 因此,用MATLAB表示矩形序列可利用上面所講的uDT函數(shù)?!緦?shí)例2-3】 利用MATLAB命令繪出矩形序列的波形圖。解:MATLAB源程序?yàn)閚=-3:8;x=uDT(n)-uDT(n-5);stem(n,x,fill),xlabel(n),grid ontitle(矩形序列)axis(-3 8 -0.1 1.1)程序運(yùn)行結(jié)果如圖2-3所示。圖2-3 矩
5、形序列4. 單邊指數(shù)序列單邊指數(shù)序列定義為 (12-4)【實(shí)例2-4】 試用MATLAB命令分別繪制單邊指數(shù)序列、的波形圖。解:MATLAB源程序?yàn)閚=0:10;a1=1.2;a2=-1.2;a3=0.8;a4=-0.8;x1=a1.n;x2=a2.n;x3=a3.n;x4=a4.n;subplot(221)stem(n,x1,fill),grid onxlabel(n),title(x(n)=1.2n)subplot(222)stem(n,x2,fill),grid onxlabel(n),title(x(n)=(-1.2)n)subplot(223)stem(n,x3,fill),grid
6、 onxlabel(n),title(x(n)=0.8n)subplot(224)stem(n,x4,fill),grid onxlabel(n),title(x(n)=(-0.8)n)圖2-4 單邊指數(shù)序列單邊指數(shù)序列的取值范圍為。程序運(yùn)行結(jié)果如圖12-4所示。從圖可知,當(dāng)時(shí),單邊指數(shù)序列發(fā)散;當(dāng)時(shí),該序列收斂。當(dāng)時(shí),該序列均取正值;當(dāng)時(shí),序列在正負(fù)擺動(dòng)。5. 正弦序列正弦序列定義為 (12-5)其中,是正弦序列的數(shù)字域頻率;為初相。與連續(xù)的正弦信號(hào)不同,正弦序列的自變量n必須為整數(shù)??梢宰C明,只有當(dāng)為有理數(shù)時(shí),正弦序列具有周期性?!緦?shí)例2-5】 試用MATLAB命令繪制正弦序列的波形圖。解
7、:MATLAB源程序?yàn)閚=0:39; x=sin(pi/6*n);stem(n,x,fill),xlabel(n),grid ontitle(正弦序列)axis(0,40,-1.5,1.5);程序運(yùn)行結(jié)果如圖2-5所示。圖2-5 正弦序列6. 復(fù)指數(shù)序列復(fù)指數(shù)序列定義為 (2-6)當(dāng)時(shí),得到虛指數(shù)序列,式中是正弦序列的數(shù)字域頻率。由歐拉公式知,復(fù)指數(shù)序列可進(jìn)一步表示為 (2-7)與連續(xù)復(fù)指數(shù)信號(hào)一樣,我們將復(fù)指數(shù)序列實(shí)部和虛部的波形分開討論,得出如下結(jié)論:(1)當(dāng)時(shí),復(fù)指數(shù)序列的實(shí)部和虛部分別是按指數(shù)規(guī)律增長的正弦振蕩序列;(2)當(dāng)時(shí),復(fù)指數(shù)序列的實(shí)部和虛部分別是按指數(shù)規(guī)律衰減的正弦振蕩序列;
8、(3)當(dāng)時(shí),復(fù)指數(shù)序列即為虛指數(shù)序列,其實(shí)部和虛部分別是等幅的正弦振蕩序列?!緦?shí)例2-6】 用MATLAB命令畫出復(fù)指數(shù)序列的實(shí)部、虛部、模及相角隨時(shí)間變化的曲線,并觀察其時(shí)域特性。解:MATLAB源程序?yàn)閚=0:30;A=2;a=-1/10;b=pi/6;x=A*exp(a+i*b)*n);subplot(2,2,1)stem(n,real(x),fill),grid ontitle(實(shí)部),axis(0,30,-2,2),xlabel(n)subplot(2,2,2)stem(n,imag(x),fill),grid ontitle(虛部),axis(0,30,-2,2) ,xlabel(
9、n)subplot(2,2,3)stem(n,abs(x),fill),grid ontitle(模),axis(0,30,0,2) ,xlabel(n)subplot(2,2,4)stem(n,angle(x),fill),grid ontitle(相角),axis(0,30,-4,4) ,xlabel(n)圖2-6 復(fù)指數(shù)序列程序運(yùn)行后,產(chǎn)生如圖2-6所示的波形。2.2.2 離散時(shí)間信號(hào)的基本運(yùn)算 對(duì)離散時(shí)間序列實(shí)行基本運(yùn)算可得到新的序列,這些基本運(yùn)算主要包括加、減、乘、除、移位、反折等。兩個(gè)序列的加減乘除是對(duì)應(yīng)離散樣點(diǎn)值的加減乘除,因此,可通過MATLAB的點(diǎn)乘和點(diǎn)除、序列移位和反折來實(shí)
10、現(xiàn),與連續(xù)時(shí)間信號(hào)處理方法基本一樣。【實(shí)例2-7】 用MATLAB命令畫出下列離散時(shí)間信號(hào)的波形圖。(1);(2)(3);(4)解:設(shè),MATLAB源程序?yàn)閍=0.8;N=8;n=-12:12;x=a.n.*(uDT(n)-uDT(n-N);n1=n;n2=n1-3;n3=n1+2;n4=-n1;subplot(411)stem(n1,x,fill),grid ontitle(x1(n),axis(-15 15 0 1)subplot(412)stem(n2,x,fill),grid ontitle(x2(n),axis(-15 15 0 1)subplot(413)stem(n3,x,fil
11、l),grid ontitle(x3(n),axis(-15 15 0 1)subplot(414)stem(n4,x,fill),grid ontitle(x4(n),axis(-15 15 0 1)圖2-7 離散時(shí)間信號(hào)的基本運(yùn)算及波形圖其波形如圖2-7所示。2.3 編程練習(xí)1. 試用MATLAB命令分別繪出下列各序列的波形圖。(1) (2)(3) (4)(5) (6)2. 試用MATLAB分別繪出下列各序列的波形圖。(1) (2)(3) (4)第3章 離散時(shí)間LTI系統(tǒng)的時(shí)域分析3.1 實(shí)驗(yàn)?zāi)康膌 學(xué)會(huì)運(yùn)用MATLAB求解離散時(shí)間系統(tǒng)的零狀態(tài)響應(yīng);l 學(xué)會(huì)運(yùn)用MATLAB求解離散時(shí)間系統(tǒng)
12、的單位取樣響應(yīng);l 學(xué)會(huì)運(yùn)用MATLAB求解離散時(shí)間系統(tǒng)的卷積和。3.2 實(shí)驗(yàn)原理及實(shí)例分析3.2.1 離散時(shí)間系統(tǒng)的響應(yīng)離散時(shí)間LTI系統(tǒng)可用線性常系數(shù)差分方程來描述,即 (3-1)其中,(,1,N)和(,1,M)為實(shí)常數(shù)。MATLAB中函數(shù)filter可對(duì)式(13-1)的差分方程在指定時(shí)間范圍內(nèi)的輸入序列所產(chǎn)生的響應(yīng)進(jìn)行求解。函數(shù)filter的語句格式為y=filter(b,a,x)其中,x為輸入的離散序列;y為輸出的離散序列;y的長度與x的長度一樣;b與a分別為差分方程右端與左端的系數(shù)向量?!緦?shí)例3-1】 已知某LTI系統(tǒng)的差分方程為試用MATLAB命令繪出當(dāng)激勵(lì)信號(hào)為時(shí),該系統(tǒng)的零狀態(tài)
13、響應(yīng)。解:MATLAB源程序?yàn)閍=3 -4 2;b=1 2;n=0:30;x=(1/2).n;y=filter(b,a,x);stem(n,y,fill),grid onxlabel(n),title(系統(tǒng)響應(yīng)y(n)程序運(yùn)行結(jié)果如圖3-1所示。圖3-1 實(shí)例3-1系統(tǒng)的零狀態(tài)響應(yīng)3.2.2 離散時(shí)間系統(tǒng)的單位取樣響應(yīng)系統(tǒng)的單位取樣響應(yīng)定義為系統(tǒng)在激勵(lì)下系統(tǒng)的零狀態(tài)響應(yīng),用表示。MATLAB求解單位取樣響應(yīng)可利用函數(shù)filter,并將激勵(lì)設(shè)為前面所定義的impDT函數(shù)。例如,求解實(shí)例13-1中系統(tǒng)的單位取樣響應(yīng)時(shí),MATLAB源程序?yàn)閍=3 -4 2;b=1 2;n=0:30;x=impDT(
14、n);h=filter(b,a,x);stem(n,h,fill),grid onxlabel(n),title(系統(tǒng)單位取樣響應(yīng)h(n)程序運(yùn)行結(jié)果如圖3-2所示。圖3-2 實(shí)例13-1的系統(tǒng)單位取樣響應(yīng)MATLAB另一種求單位取樣響應(yīng)的方法是利用控制系統(tǒng)工具箱提供的函數(shù)impz來實(shí)現(xiàn)。impz函數(shù)的常用語句格式為impz(b,a,N)其中,參數(shù)N通常為正整數(shù),代表計(jì)算單位取樣響應(yīng)的樣值個(gè)數(shù)?!緦?shí)例3-2】 已知某LTI系統(tǒng)的差分方程為利用MATLAB的impz函數(shù)繪出該系統(tǒng)的單位取樣響應(yīng)。解:MATLAB源程序?yàn)閍=3 -4 2;b=1 2;n=0:30;impz(b,a,30),grid
15、 ontitle(系統(tǒng)單位取樣響應(yīng)h(n)程序運(yùn)行結(jié)果如圖3-3所示,比較圖3-2和圖3-3,不難發(fā)現(xiàn)結(jié)果相同。圖3-3 系統(tǒng)單位取樣響應(yīng)3.2.3 離散時(shí)間信號(hào)的卷積和運(yùn)算由于系統(tǒng)的零狀態(tài)響應(yīng)是激勵(lì)與系統(tǒng)的單位取樣響應(yīng)的卷積,因此卷積運(yùn)算在離散時(shí)間信號(hào)處理領(lǐng)域被廣泛應(yīng)用。離散時(shí)間信號(hào)的卷積定義為 (3-2)可見,離散時(shí)間信號(hào)的卷積運(yùn)算是求和運(yùn)算,因而常稱為“卷積和”。MATLAB求離散時(shí)間信號(hào)卷積和的命令為conv,其語句格式為y=conv(x,h)其中,x與h表示離散時(shí)間信號(hào)值的向量;y為卷積結(jié)果。用MATLAB進(jìn)行卷積和運(yùn)算時(shí),無法實(shí)現(xiàn)無限的累加,只能計(jì)算時(shí)限信號(hào)的卷積。例如,利用MAL
16、AB的conv命令求兩個(gè)長為4的矩形序列的卷積和,即,其結(jié)果應(yīng)是長為7(4+4-1=7)的三角序列。用向量1 1 1 1表示矩形序列,MATLAB源程序?yàn)閤1=1 1 1 1;x2=1 1 1 1;g=conv(x1,x2)g=1 2 3 4 3 2 1如果要繪出圖形來,則利用stem命令,即n=1:7;stem(n,g,fill),grid on,xlabel(n)程序運(yùn)行結(jié)果如圖13-4所示。圖3-4 卷積結(jié)果圖對(duì)于給定函數(shù)的卷積和,我們應(yīng)計(jì)算卷積結(jié)果的起始點(diǎn)及其長度。兩個(gè)時(shí)限序列的卷積和長度一般等于兩個(gè)序列長度的和減1?!緦?shí)例3-3】 已知某系統(tǒng)的單位取樣響應(yīng)為,試用MATLAB求當(dāng)激勵(lì)
17、信號(hào)為時(shí),系統(tǒng)的零狀態(tài)響應(yīng)。解:MATLAB中可通過卷積求解零狀態(tài)響應(yīng),即。由題意可知,描述向量的長度至少為8,描述向量的長度至少為4,因此為了圖形完整美觀,我們將向量和向量加上一些附加的零值。MATLAB源程序?yàn)閚x=-1:5; %x(n)向量顯示范圍(添加了附加的零值)nh=-2:10; %h(n)向量顯示范圍(添加了附加的零值)x=uDT(nx)-uDT(nx-4);h=0.8.nh.*(uDT(nh)-uDT(nh-8);y=conv(x,h);ny1=nx(1)+nh(1); %卷積結(jié)果起始點(diǎn)%卷積結(jié)果長度為兩序列長度之和減1,即0到(length(nx)+length(nh)-2)%因此卷積結(jié)果的時(shí)間范圍是將上述長度加上起始點(diǎn)的偏移值ny=ny1+(0:(length(nx)+length(nh)-2);subplot(311)stem(nx,x,fill),grid onxlabel(n),title(x(n)axis(-4 16 0 3)sub
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧能源管理安全生產(chǎn)承包責(zé)任制合同書范文2篇
- 2024潤滑油購銷合同樣本
- 高中信息技術(shù)粵教版必修說課稿 -4.2.3 信息智能處理的應(yīng)用價(jià)值-001
- 第二單元 單元導(dǎo)引 說課稿 2024-2025學(xué)年統(tǒng)編版高中語文選擇性必修上冊(cè)001
- 2024版音響設(shè)備購買合同
- 小班音樂教育活動(dòng)策劃方案五篇
- 2024年短視頻宣傳制作合同3篇
- 2025版口腔診所與醫(yī)療機(jī)構(gòu)合作的口腔醫(yī)療人才培養(yǎng)項(xiàng)目承包協(xié)議3篇
- 2024年設(shè)備租賃與融資合同
- 布魯克林秘案劇情解析
- 教學(xué)反思萬能簡短11篇
- 水產(chǎn)動(dòng)物增養(yǎng)殖學(xué)蝦蟹類增養(yǎng)殖終極版
- 七年級(jí)科學(xué)上冊(cè)期末測試卷
- 測試工程師年度個(gè)人工作總結(jié)和明年工作計(jì)劃模板
- 物理實(shí)驗(yàn):測量電容器的電容和電荷量
- 免疫相關(guān)不良反應(yīng)的預(yù)防和處理
- 浙江工商大學(xué)高級(jí)商務(wù)漢語一期末考試 卷附有答案
- 【區(qū)域開發(fā)戰(zhàn)略中環(huán)境保護(hù)政策的現(xiàn)存問題及優(yōu)化建議分析6800字(論文)】
- 中國人民銀行征信中心應(yīng)收賬款質(zhì)押登記操作規(guī)則
- 05K405 新型散熱器選用與安裝
- 明亞保險(xiǎn)經(jīng)紀(jì)人考試題庫答案
評(píng)論
0/150
提交評(píng)論