2019年近五年安徽文科高考數(shù)學(xué)試卷及答案2.doc_第1頁
2019年近五年安徽文科高考數(shù)學(xué)試卷及答案2.doc_第2頁
2019年近五年安徽文科高考數(shù)學(xué)試卷及答案2.doc_第3頁
2019年近五年安徽文科高考數(shù)學(xué)試卷及答案2.doc_第4頁
2019年近五年安徽文科高考數(shù)學(xué)試卷及答案2.doc_第5頁
已閱讀5頁,還剩81頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、 2007 年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)數(shù)學(xué)(文科)本試卷分第 i 卷(選擇題)和第 ii 卷(非選擇題)兩部分,第 i 卷第 i 至第 2 頁,第 ii 卷第 3 至第 4 頁全卷滿分 150 分,考試時間 120 分鐘考生注意事項:1 答題前,務(wù)必在試題卷、答題卡規(guī)定的地方填寫自己的座位號、姓名,并認(rèn)真核對 答題卡上所粘貼的條形碼中“座位號、姓名、科類”與本人座位號、姓名、科類是否一致2 答第 i 卷時,每小題選出答案后,用 2鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑如 需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號3答第 ii 卷時,必須用 效0.5毫米黑色黑水簽字筆在答題卡上書寫在

2、試題卷上作答無4考試結(jié)束,監(jiān)考員將試題和答題卡一并收回 參考公式:如果事件a,b互斥,那么 球的表面積公式p ( a +b ) =p ( a) +p ( b )s =4 r2如果事件 a,b 相互獨立,那么球的體積公式1 +2 +n =n( n +1) 2v =43r312+22+n2=n( n +1)(2n +1)6其中r表示球的半徑13 +23+n3=n 2 ( n +1)2 4第 i 卷(選擇題共 55 分)一、選擇題:本大題共 11 小題,每小題 5 分,共 55 分在每小題給出的四個選項中,只有一項是符合題目要求的 1若 a =xx2 =1,b=xx2-2 x -3 =0,則ab =

3、( )31-12橢圓x2+4 y2=1的離心率為( )323422233等差數(shù)列a的前 nn項和為sn,若a =12,a =33,則s =4( )1210864下列函數(shù)中,反函數(shù)是其自身的函數(shù)為( )f ( x ) =x2,x 0,+)f ( x ) =x3,x ( -,+)f ( x) =ex,x (-,+)f ( x) =1x,x (0,+)5若圓x2+y2-2 x -4 y =0的圓心到直線x -y +a =0的距離為22,則 a 的值為( ) -2 或 21 3或 2 或 0 2 2 -2 或 06設(shè) t , m , n 均為直線,其中 m,n 在平面 a 內(nèi),則“ l a ”是“ l

4、 m 且 l n ”的 ( )充分不必要條件 必要不充分條件充分必要條件 既不充分也不必要條件 y7圖中的圖象所表示的函數(shù)的解析式為( )y =32x -1( 0 x 2 )323 3y = - x -1 2 2(0 x 2)y =32- x -1(0 x 2)o1 2xy =1 -x -1(0 x 2)第 7 題圖8設(shè) a 1 ,且 m =log ( aa2+1) , n =log ( a -1) , p =log (2 a ) ,則 m,n,pa a的大小關(guān)系為( ) n m p m p n m n p p m n9如果點 p 在平面區(qū)域 2 x -y +2 0x +y -2 0 上,點q

5、 在曲線 x2+( y +2)2=1 上,那么 pq 的2 y -1 0最小值為( )3245-12 2 -12 -110 把邊長為2的正方形 abcd 沿對角線 ac 折成直二面角,折成直二面角后,在a,b, c,d四點所在的球面上, b 與 d 兩點之間的球面距離為( )2 2 311定義在r 上的函數(shù) f ( x)既是奇函數(shù),又是周期函數(shù),t 是它的一個正周期若將方程f ( x) =0在閉區(qū)間-t, t 上的根的個數(shù)記為n,則n可能為( )01352007 年普通高等學(xué)校招生全國統(tǒng)一考試(安微卷) 數(shù)學(xué)(文科)第 ii 卷(非選擇題共 95 分)注意事項:請用0.5毫米黑色墨水簽字筆在答

6、題卡上書寫作答,在試題卷上書寫作答無效二、填空題:本大題共 4 小題,每小題 4 分,共 16 分,把答案填在答題卡的相應(yīng)位置12 已知(1-x ) 5 =a +a x +a x 2 +a x3 +a x 4 +a x0 1 2 3 4 55,則( a +a +a )( a +a +a ) 0 2 4 1 3 5的值等于 13在四面體o -abc中,oa =a,ob =b,oc =c,d為bc的中點,e為ad的中點,則oe =(用a,b,c表示)14在正方體上任意選擇兩條棱,則這兩條棱相互平行的概率為15函數(shù) f ( x ) =3sin 2 x - 3 的圖象為c,如下結(jié)論中正確的是( 寫 出

7、所有正確結(jié)論的編號)圖象c關(guān)于直線x =1112對稱;圖象 c 關(guān)于點2 ,0 對稱; 3 函數(shù)f ( x)在區(qū)間- 5 , 內(nèi)是增函數(shù); 12 12 由y =3sin 2 x的圖角向右平移3個單位長度可以得到圖象c三、解答題:本大題共 6 小題,共 79 分解答應(yīng)寫出文字說明、證明過程或演算步驟 16(本小題滿分 10 分)解不等式( 3x -1 -1)(sin x -2) 0d1c117(本小題滿分 14 分)如圖,在六面體 abcd -a b c d 中,四邊形 abcd 是邊長為 2 的正1 1 1 1方形,四邊形 a b c d 是邊長為 1 的正方形, dd 平面 a b c d

8、,1 1 1 1 1 1 1 1 1dd 平面 abcd , dd =2 1 1()求證: a c 與 ac 共面, b d 與 bd 共面1 1 1 1()求證:平面 a acc 平面 b bdd ;1 1 1 1()求二面角 a -bb -c 的大?。ㄓ梅慈呛瘮?shù)值表示)118(本小題滿分 14 分)a b1 1d ca b設(shè)f是拋物線g : x 2 =4 y的焦點(i)過點p (0,-4)作拋物線 g 的切線,求切線方程;(ii)設(shè)a,b為拋物線g上異于原點的兩點,且滿足fa fb =0,延長af,bf分別交拋物線g于點c,d,求四邊形abcd面積的最小值19(本小題滿分 13 分)在醫(yī)

9、學(xué)生物試驗中,經(jīng)常以果蠅作為試驗對象一個關(guān)有 6 只果蠅的籠子里,不慎混入了兩 只蒼蠅(此時籠內(nèi)共有 8 只蠅子:6 只果蠅和 2 只蒼蠅),只好把籠子打開一個小孔,讓蠅 子一只一只地往外飛,直到兩只蒼蠅都飛出,再關(guān)閉小孔(i) 求籠內(nèi)恰好剩下 1 只果蠅的概率;(ii) 求籠內(nèi)至少剩下 5 只果蠅的概率20(本小題滿分 14 分)設(shè)函數(shù)f ( x) =-cos2x -4t sinx xcos +4t2 23+t2-3t +4 , x r ,其中t 1,將f ( x)的最小值記為g (t )(i)求g (t )的表達(dá)式;(ii)討論g (t )在區(qū)間( -11),內(nèi)的單調(diào)性并求極值21(本小題

10、滿分 14 分)某國采用養(yǎng)老儲備金制度公民在就業(yè)的第一年就交納養(yǎng)老儲備金,數(shù)目為 a ,以后每年交1納的數(shù)目均比上一年增加 d ( d 0) ,因此,歷年所交納的儲備金數(shù)目 a ,a , 是一個公差為1 2d 的等差數(shù)列與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復(fù)利這 就是說,如果固定年利率為 r (r 0) ,那么,在第 n 年末,第一年所交納的儲備金就變?yōu)閍 (1+r ) 1n -1,第二年所交納的儲備金就變?yōu)?a (1 +r )2n -2, 以 t 表示到第 n 年末所累計n的儲備金總額()寫出 t 與 t ( n 2) 的遞推關(guān)系式;n n -1()求證: t =a

11、+b ,其中 a是一個等比數(shù)列, b是一個等差數(shù)列n n n n n2007 年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷) 數(shù)學(xué)(文史)參考答案一、選擇題:本題考查基本知識的基本運算每小題 5 分,滿分 55 分1 2 3 4 5 67 8 9 10 11二、填空題:本題考查基本知識和基本運算每小題 4 分,滿分 16 分12-256131 1 1 a + b + c2 4 41431115三、解答題16本小題主要考查三角函數(shù)的基本性質(zhì),含絕對值不等式的解法,考查基本運算能力本 小題滿分 10 分解:因為對任意x r,sin x -2 0,所以原不等式等價于3 x -1 -10即3 x -1 1,

12、-1 3 x -1 1,0 3 x 2 ,故解為 0 x 23所以原不等式的解集為 2 x 0 x 0 因直線 ac 過焦點 f (0,1),所以直線 ac 的方程為 y =kx +1點 a,c 的坐標(biāo)滿足方程組 y =kx +1, x 2 =4 y,得x2-4 kx -4 =0,由根與系數(shù)的關(guān)系知 x +x =4k, 1 2x x =-4. 1 2ac = ( x -x ) 2 +( y -y ) 2 = 1 +k 2 ( x +x ) 2 -4 x x =4(1+k 2 )1 2 1 2 1 2 1 2因為ac bd,所以bd的斜率為-1 1,從而 bd 的方程為 y =- x +1 k

13、k 1 同理可求得 bd =4 1+-= 4(1+kk 22)sabcd1 8(1+k 2 ) 2= ac bd = =8( k 2 k 221+2 + ) 32k 2當(dāng)k =1時,等號成立所以,四邊形abcd面積的最小值為3219 本小題主要考查排列、組合知識與等可能事件、互斥事件概率的計算,運用概率知識 分析問題及解決實際問題的能力本小題滿分 13 分解:以 a 表示恰剩下 k 只果蠅的事件 k( k =01,6) 以bm表示至少剩下m只果蠅的事件( m =0,1,6) 可以有多種不同的計算p ( a )k的方法k-1,-2- ,2 2,122方法 1(組合模式):當(dāng)事件ak發(fā)生時,第8

14、-k只飛出的蠅子是蒼蠅,且在前7 -k只飛出的蠅子中有 1 只是蒼蠅,所以c1 7 -k p ( a ) = 7 -k =c 2 288方法 2(排列模式):當(dāng)事件 a 發(fā)生時,共飛走 8 -k 只蠅子,其中第8 -k 只飛出的蠅子是k蒼蠅,哪一只?有兩種不同可能在前7 -k只飛出的蠅子中有6 -k只是果蠅,有c6-k8種不 同 的 選 擇 可 能 , 還 需 考 慮 這7 -k只 蠅 子 的 排 列 順 序 所 以p( a ) =kc1 c 6-k (7 -k )! 2 6a8 -k8=7 -k28由上式立得p ( a ) =16 3=28 14;p ( b ) =p ( a +a ) =p

15、 ( a ) +p ( a ) =3 5 6 5 632820 本小題主要考查同角三角函數(shù)的基本關(guān)系,倍角的正弦公式,正弦函數(shù)的值域,多項 式函數(shù)的導(dǎo)數(shù),函數(shù)的單調(diào)性,考查應(yīng)用導(dǎo)數(shù)分析解決多項式函數(shù)的單調(diào)區(qū)間,極值與最 值等問題的綜合能力本小題滿分 14 分解:(i)我們有f ( x) =-cos2x xx -4t sin cos +4t 2 23+t2-3t +4=sin2 x -1-2t sin +4t 2 +t 2-3t +4=sin 2 x -2t sin x +t 2 +4t 3 -3t +3=(sin x -t )2 +4t 3-3t +3由于(sin x -t ) 2 0,t 1

16、,故當(dāng)sin x =t時,f ( x)達(dá)到其最小值g (t ),即g (t ) =4t 3 -3t +3(ii)我們有g(shù)(t) =12t2-3 =3(2t +1)(2t -1),-1t 0)為公 比 的 等 比 數(shù) 列 ;bn是 以a r + d d d- 1 - 為首項, - 為公差的等差數(shù)列 r 2 r r2008 年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)數(shù) 學(xué)(文科)本試卷分第卷(選擇題)和第卷(非選擇題)兩部分,第卷第 1 至第2 頁,第卷第 3 至第 4 頁全卷滿分 150 分,考試時間 120 分鐘考生注意事項:1 答題前,務(wù)必在試題卷、答題卡規(guī)定的地方填寫自己的座位號、姓名,并認(rèn)

17、真核對答題 卡上所粘貼的條形碼中“座位號、姓名、科類”與本人座位號、姓名、科類是否一致2 答第卷時,每小題選出答案后,用 2b 鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑如 需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號3 答第卷時,必須用 0.5 毫米黑色墨水簽字筆在答題卡上書寫在試題卷上作答無效 4 考試結(jié)束,監(jiān)考員將試題卷和答題卡一并收回參考公式:如果事件 a,b 互斥,那么球的表面積公式s =4 r2p ( a +b ) =p ( a) +p ( b )其中 r 表示球的半徑如果事件 a,b 相互獨立,那么球的體積公式4v = r33p ( a b ) =p ( a) p ( b )其中r表示球

18、的半徑第 i 卷(選擇題共 60 分)一、選擇題:本大題共 12 小題,每小題 5 分,共 60 分在每小題給出的四個選項中,只 有一項是符合題目要求的(1)若 a 為位全體正實數(shù)的集合,b =-2,-1,1,2則下列結(jié)論正確的是( )acaab =-2,-1b =(0, +)bd( a)r( a)rb =( -,0) b =-2,-1解: a 是全體非正數(shù)的集合即負(fù)數(shù)和 0,所以 r( a)rb =-2,-1(2)若ab =(2,4),ac =(1,3), 則bc =( )a (1,1)b(1,1) c(3,7)d(-3,-7)解:向量基本運算bc =ac -ab =(1,3) -(2,4)

19、 =( -1, -1)(3)已知 m , n 是兩條不同直線,a,b,g是三個不同平面,下列命題中正確的是( )a若a g,bg, 則abb若m a,n a,則m nc若ma, na, 則m nd若ma, m b,則ab解:定理:垂直于一個平面的兩條直線互相平行,故選 b。(4)a 0,得 a1 時方程有根。a0 時,x x =1 21a0,方程有負(fù)根,又 a=1時,方程根為x =-1,所以選 b(5)在三角形abc中,ab =5, ac =3, bc =7,則bac的大小為( )a2 p3b5 p6c3 p4dp3解:由余弦定理cos bac =52 +32 -7 2 1=- 2 5 3 2

20、,bac =2 p3(6)函數(shù)f ( x ) =( x -1)2+1(x 0)的反函數(shù)為af-1( x ) =1 -x -1( x 1)bf-1( x ) =1 +x -1( x 1)cf -1( x) =1 - x -1( x 2)df -1( x ) =1 +x -1( x 2)解:由原函數(shù)定義域是反函數(shù)的值域,f-1( x ) 0,排除 b,d 兩個;又原函數(shù) x 不能取1,f ( x)不能取 1,故反函數(shù)定義域不包括 1,選 c .(直接求解也容易)(7)設(shè)(1+x )8=a +a x +0 1+a x88, 則 a a ,0, 1, a8中奇數(shù)的個數(shù)為( )a2b3c4d5解:由題知

21、 a =cii8(i =0,1,2, 8),逐個驗證知 c08=c88=1,其它為偶數(shù),選 a。(8)函數(shù)y =sin(2 x +p3)圖像的對稱軸方程可能是( )ax =-p6bx =-p12cx =p6dx =p12解:y =sin(2 x +p3)的對稱軸方程為p 2 x + =k3p+p2,即x =kp p p + , k =0, x =2 12 12(9)設(shè)函數(shù)f ( x) =2 x +1x-1(x 0),則f ( x)( )a有最大值b有最小值c是增函數(shù)d是減函數(shù)解: x 0, -1 1 10 , f ( x) =2 x + -1 =-(-2x ) +( - ) -1 x x x,

22、由基本不等式1 1f ( x ) =-(-2x ) +( - ) -1 -2 ( -2x )( - ) -1 =-2 2 -1x x有最大值,選 a22(10)若過點 a(4,0) 的直線 l 與曲線( x -2)2+y2=1有公共點,則直線 l 的斜率的取值范圍為( )a- 3, 3 b (- 3, 3)c-3 3, 3 3d( -3 3, )3 3解:解:設(shè)直線方程為y =k ( x -4) ,即 kx -y -4 k =0 ,直線 l 與曲線( x -2)2+y2=1有公共點,圓心到直線的距離小于等于半徑d =2k -4 k k 2 +11,得4k2 k 2 +1, k 213,選擇 c

23、另外,數(shù)形結(jié)合畫出圖形也可以判斷 c 正確。(11) 若 a 為不等式組 x 0y 0 y -x 2表示的平面區(qū)域,則當(dāng) a 從2 連續(xù)變化到 1 時,動直線x +y =a掃過a中的那部分區(qū)域的面積為( )a34b1c 74d5解:如圖知區(qū)域的面積是oab 去掉一個小直角三角形。(陰影部分面積比 1 大,比soab1= 2 2 =2 2小,故選 c,不需要算出來)(12)12 名同學(xué)合影,站成前排 4 人后排 8 人,現(xiàn)攝影師要從后排 8 人中抽 2 人調(diào)整到前 排,若其他人的相對順序不變,則不同調(diào)整方法的總數(shù)是 ( )ac 2 a68 6bc 28a23cc 28a26dc 28a25解:從

24、后排 8 人中選 2 人共 c 種選法,這 2 人插入前排 4 人中且保證前排人的順序不變,8則先從 4 人中的 5 個空擋插入一人,有 5 種插法;余下的一人則要插入前排 5 人的空擋,有6 種插法,故為 a6;綜上知選 c。1n222008 年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)數(shù) 學(xué)(文科)第卷(非選擇題共 90 分)考生注意事項:請用 0.5 毫米黑色墨水簽字筆在答題卡上書寫作答,在試題卷上書寫作答無效 二、填空題:本大題共 4 小題,每小題 4 分,共 16 分把答案填在答題卡的相應(yīng)位置(13)函數(shù)f ( x ) =x -2 -1 log ( x -1)2的定義域為 解:由題知:l

25、og ( x -1) 0, x -1 0且x -1 0 ,| x -2 | -10 2;解得:x3.(14)已知雙曲線x 2 y 2- =1n 12 -n的離心率是 3 。則 n 解:a 2 =n, b 2 =12 -n, c 2 =a 2 +b 2 =12,離心率e =c 12= = 3a n,所以n =4(15) 在數(shù)列a 在中,a =4 n - n n52,a +a +1 2a =ann2+bn ,n n*,其中 a , b 為常數(shù),則ab =解:5 3a =4 n - , a = ,2 2從而s =n3 5n ( +4 n - )n =2n 2 -2 2。a=2,b =-12,則ab

26、=-1(16)已知點a, b , c , d在同一個球面上,ab 平面bcd , bc cd ,若ab =6, ac =2 13, ad =8,則b, c兩點間的球面距離是解:如圖,易得bc =(2 13) 2 -6 2 =4,bd = 82 -62 =2 7, cd = 12,則此球內(nèi)接長方體三條棱長為 ab、bc、cd(cd的 對 邊 與 cd 等 長 ), 從 而 球 外 接 圓 的 直 徑 為2 r = 62+42+( 12)2=8,r=4 則 bc 與球心構(gòu)成的大圓如圖,因為obc 為正三角形,則 b,c 兩點間的球面距離是4p3。三、解答題:本大題共 6 小題,共 74 分解答應(yīng)寫出文字說明、證明過程或演算步驟 (17)(本小題滿分 12 分)已知函數(shù)f ( x) =cos(2 x -p p p ) +2sin( x - )sin( x + )3 4 4()求函數(shù)f ( x)的最小正周期和圖象的對稱軸方程()求函數(shù)f ( x)在區(qū)間-p p, 12 2上的值域解:(1)p p pf ( x) =cos(2 x - ) +2sin( x - )sin( x + )3 4 41 3= cos 2 x + sin 2 x +(sin x -cos x )(sin x +cos x) 2 2=1 3cos 2 x + sin 2 x +sin 2 x -cos 2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論