2017-2018學(xué)年高中數(shù)學(xué) 復(fù)習(xí)課(三)概率教學(xué)案_第1頁
2017-2018學(xué)年高中數(shù)學(xué) 復(fù)習(xí)課(三)概率教學(xué)案_第2頁
2017-2018學(xué)年高中數(shù)學(xué) 復(fù)習(xí)課(三)概率教學(xué)案_第3頁
免費預(yù)覽已結(jié)束,剩余19頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、學(xué)必求其心得,業(yè)必貴于專精復(fù)習(xí)課(三)概率古典概型古典概型是學(xué)習(xí)及高考考查的重點,考查形式以填空題為主,試題難度屬容易或中等,處理的關(guān)鍵在于用枚舉法找出試驗的所有可能的基本事件及所求事件所包含的基本事件還要注意理解事件間關(guān)系,準(zhǔn)確判斷兩事件是否互斥,是否對立,合理利用概率加法公式及對立事件概率公式1事件(1)基本事件在一次試驗中可能出現(xiàn)的每一個可能結(jié)果(2)等可能事件若在一次試驗中,每個基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件(3)互斥事件定義:不能同時發(fā)生的兩個事件稱為互斥事件如果事件a1,a2,an中的任何兩個都是互斥事件,就說事件a1,a2,,an彼此互斥規(guī)定:設(shè)a,

2、b為互斥事件,若事件a,b至少有一個發(fā)生,我們把這個事件記作ab。(4)對立事件兩個互斥事件必有一個發(fā)生,則稱這兩個事件為對立事件,事件a的對立事件記作。2概率的計算公式(1)古典概型特點:有限性,等可能性計算公式:p(a)。(2)互斥事件的概率加法公式若事件a,b互斥,那么事件ab發(fā)生的概率等于事件a,b分別發(fā)生的概率的和即p(ab)p(a)p(b)若事件a1,a2,an兩兩互斥則p(a1a2an)p(a1)p(a2)p(an)(3)對立事件計算公式:p()1p(a)典例(1)已知5件產(chǎn)品中有2件次品,其余為合格品現(xiàn)從這5件產(chǎn)品中任取2件,恰有一件次品的概率為_(2)將2本不同的數(shù)學(xué)書和1本

3、語文書在書架上隨機(jī)排成一行,則2本數(shù)學(xué)書相鄰的概率為_(3)隨機(jī)擲兩枚骰子,它們向上的點數(shù)之和不超過5的概率記為p1 ,點數(shù)之和大于5的概率記為p2 ,點數(shù)之和為偶數(shù)的概率記為p3 ,則p1,p2,p3從小到大依次為_(4)(天津高考)設(shè)甲、乙、丙三個乒乓球協(xié)會的運動員人數(shù)分別為27,9,18?,F(xiàn)采用分層抽樣的方法從這三個協(xié)會中抽取6名運動員組隊參加比賽應(yīng)從這三個協(xié)會中分別抽取的運動員的人數(shù)為_將抽取的6名運動員進(jìn)行編號,編號分別為a1,a2,a3,a4,a5,a6.從這6名運動員中隨機(jī)抽取2人參加雙打比賽則編號為a5和a6的兩名運動員中至少有1人被抽到概率為_解(1)記3件合格品為a1,a2

4、,a3,2件次品為b1,b2,則任取2件構(gòu)成的基本事件空間為(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),共10個基本事件記“恰有1件次品”為事件a,則a(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),共6個基本事件故其概率為p(a)0.6。(2)設(shè)2本數(shù)學(xué)書分別為a,b,語文書為c,則所有的排放順序有abc,acb,bac,bca,cab,cba,共6種情況,其中數(shù)學(xué)書相鄰的有abc,bac,cab,cba,共4種情況,故2本數(shù)學(xué)書

5、相鄰的概率p.(3)總的基本事件個數(shù)為36,向上的點數(shù)之和不超過5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10個,則向上的點數(shù)之和不超過5的概率p1;向上的點數(shù)之和大于5的概率p21;向上的點數(shù)之和為偶數(shù)與向上的點數(shù)之和為奇數(shù)的個數(shù)相等,故向上的點數(shù)之和為偶數(shù)的概率p3。即p1p3p2。(4)應(yīng)從甲、乙、丙三個協(xié)會中抽取的運動員人數(shù)分別為3,1,2。從6名運動員中隨機(jī)抽取2人參加雙打比賽的所有可能結(jié)果為a1,a2,a1,a3,a1,a4,a1,a5,a1,a6,a2,a3,a2,a4,a2,a5,a2,a6,

6、a3,a4,a3,a5,a3,a6,a4,a5,a4,a6,a5,a6,共15種編號為a5和a6的兩名運動員中至少有1人被抽到的所有可能結(jié)果為a1,a5,a1,a6,a2,a5,a2,a6,a3,a5,a3,a6,a4,a5,a4,a6,a5,a6,共9種因此,事件a發(fā)生的概率p(a).答案(1)0.6(2)(3)p1p3p2(4)3,1,2類題通法解決與古典概型問題時,把相關(guān)的知識轉(zhuǎn)化為事件,列舉基本事件,求出基本事件和隨機(jī)事件的個數(shù),然后利用古典概型的概率計算公式進(jìn)行計算1袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為_解

7、析:利用列舉法可求出基本事件總數(shù)為6種,其中符合要求的有5種,故p。答案:2若某公司從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用三人,這五人被錄用的機(jī)會均等,則甲或乙被錄用的概率為_解析:所有基本事件為(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10種,其中符合“甲與乙均未被錄用”的結(jié)果只有(丙,丁,戊)故所求概率p1.答案:3甲、乙兩名運動員各自等可能地從紅、白、藍(lán)3種顏色的運動服中選擇1種,則他們選擇相同顏色運動服的概率為_解析:甲、乙兩名運動員各自等可能地從紅、白、藍(lán)3種顏色

8、的運動服中選擇1種的所有可能情況為(紅,白),(白,紅),(紅,藍(lán)),(藍(lán),紅),(白,藍(lán)),(藍(lán),白),(紅,紅),(白,白),(藍(lán),藍(lán)),共9種,他們選擇相同顏色運動服的所有可能情況為(紅,紅),(白,白),(藍(lán),藍(lán)),共3種故所求概率為p。幾何概型答案: 幾何概型是各類考查的重點,考查形式以填空題為主,試題難度比古典概型稍大1幾何概型的特征(1)無限性:即試驗結(jié)果有無限多個(2)等可能性:即每個結(jié)果出現(xiàn)是等可能的2幾何概型的概率公式在幾何概型中,事件a的概率的計算公式如下:p(a)典例(1)在區(qū)間0,5上隨機(jī)選擇一個數(shù)p,則方程x22px3p20有兩個負(fù)根的概率為_(2)如圖,在邊長為1

9、的正方形中隨機(jī)撒1 000粒豆子,有180粒落到陰影部分,據(jù)此估計陰影部分的面積為_(3)已知事件“在矩形abcd的邊cd上隨機(jī)取一點p,使apb的最大邊是ab發(fā)生的概率為,則_.解析(1)設(shè)方程x22px3p20有兩個負(fù)根分別為x1,x2,解得p1或p2。故所求概率p。(2)依題意,得,所以,解得s陰影0。18。(3)由已知,點p的分界點恰好是邊cd的四等分點,由勾股定理可得ab22ad2,解得2,即.答案(1)(2)0。18(3)類題通法(1)幾何概型概率的大小與隨機(jī)事件所在區(qū)域的形狀位置無關(guān),只和該區(qū)域的大小有關(guān)(2)在解題時要準(zhǔn)確把握,要把實際問題作合理的轉(zhuǎn)化;要注意古典概型和幾何概型

10、的區(qū)別,正確地選用幾何概型的類型解題1(山東高考)在區(qū)間0,2上隨機(jī)地取一個數(shù)x,則事件“1log1發(fā)生的概率為_解析:不等式1log1可化為log2loglog,即x2,解得0x,故由幾何概型的概率公式得p.答案:2。(福建高考)如圖,矩形abcd中,點a在x軸上,點b的坐標(biāo)為(1,0),且點c與點d在函數(shù)f(x)的圖象上. 若在矩形abcd內(nèi)隨機(jī)取一點,則此點取自陰影部分的概率等于_解析:因為f(x)b點坐標(biāo)為(1,0),所以c點坐標(biāo)為(1,2),d點坐標(biāo)為(2,2),a點坐標(biāo)為(2,0),故矩形abcd的面積為236,陰影部分的面積為31,故p。答案:3在體積為v的三棱錐s 。abc的棱

11、ab上任取一點p,則三棱錐s 。apc的體積大于的概率是_解析:由題意可知,三棱錐s.abc的高與三棱錐sapc的高相同作pmac交于點m,bnac交于點n,則pm,bn分別為apc與abc的高,所以,又,所以,故所求的概率為(即為長度之比)概率和統(tǒng)計綜合應(yīng)用答案:對于給定的隨機(jī)事件a.由于事件a發(fā)生的頻率fn(a)隨著試驗次數(shù)的增加穩(wěn)定于概率p(a),因此各類考試常常結(jié)合統(tǒng)計的知識考查概率考查形式一般以解答題為主,難度中等解決此類考題要注意:正確利用數(shù)形結(jié)合的思想充分利用概率是頻率的穩(wěn)定值,用頻率估計概率準(zhǔn)確地處理所給數(shù)據(jù)典例某公司為了解用戶對其產(chǎn)品的滿意度,從a,b兩地區(qū)分別隨機(jī)調(diào)查了40

12、個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到a地區(qū)用戶滿意度評分的頻率分布直方圖和b地區(qū)用戶滿意度評分的頻數(shù)分布表圖b地區(qū)用戶滿意度評分的頻數(shù)分布表滿意度評分分組50,60)60,70)70,80)80,90)90,100頻數(shù)2814106(1)在圖中作出b地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可)圖(2)根據(jù)用戶滿意度評分,將用戶的滿意度分為三個等級:滿意度評分低于70分70分到89分不低于90分滿意度等級不滿意滿意非常滿意估計哪個地區(qū)用戶的滿意度等級為不滿意的概率大?說明理由解(1)如圖所示通過兩地區(qū)用戶滿意度評分

13、的頻率分布直方圖可以看出,b地區(qū)用戶滿意度評分的平均值高于a地區(qū)用戶滿意度評分的平均值;b地區(qū)用戶滿意度評分比較集中,而a地區(qū)用戶滿意度評分比較分散(2)a地區(qū)用戶的滿意度等級為不滿意的概率大記ca表示事件:“a地區(qū)用戶的滿意度等級為不滿意”;cb表示事件:“b地區(qū)用戶的滿意度等級為不滿意”由直方圖得p(ca)的估計值為(0.010。020.03)100.6,p(cb)的估計值為(0。0050.02)100。25。所以a地區(qū)用戶的滿意度等級為不滿意的概率大類題通法解決概率和統(tǒng)計綜合題,首先要明確頻率、概率、頻率分布表、頻率分布直方圖、概率的計算方法等基本知識,要充分利用頻率估計概率及數(shù)形結(jié)合等

14、基本思想,正確處理各種數(shù)據(jù)1. 隨機(jī)抽取某中學(xué)高三年級甲、乙兩班各10名同學(xué),測量出他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖,其中甲班有一個數(shù)據(jù)被污損。(1)若已知甲班同學(xué)身高的平均數(shù)為170 cm,求污損處的數(shù)據(jù);(2)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取2名身高不低于173 cm的同學(xué),求身高176 cm的同學(xué)被抽中的概率解:(1)設(shè)被污損的數(shù)字為a,由題意知,甲班同學(xué)身高的平均數(shù)為170,解得 a9。(2)設(shè)“身高176 cm的同學(xué)被抽中”的事件為a,從乙班10名同學(xué)中抽取2名身高不低于173 cm的同學(xué)有:181,173,181,176,181,178,181,179,179,17

15、3,179,176,179,178,178,173,178,176,176,173,共10個基本事件,而事件a含有4個基本事件,所以p(a)。2某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:40,50),50,60),80,90),90,100(1)求頻率分布直方圖中a的值;(2)估計該企業(yè)的職工對該部門評分不低于80的概率;(3)從評分在40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評分都在40,50)的概率解:(1)因為(0。004a0。0180.02220.028)101,所以a

16、0.006.(2)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為(0.0220.018)100.4,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為0。4。(3)受訪職工中評分在50,60)的有:500.006103(人),記為a1,a2,a3;受訪職工中評分在40,50)的有:500。004102(人),記為b1,b2.從這5名受訪職工中隨機(jī)抽取2人,所有可能的結(jié)果共有10種,它們是a1,a2,a1,a3,a1,b1,a1,b2,a2,a3,a2,b1,a2,b2,a3,b1,a3,b2,b1,b2又因為所抽取2人的評分都在40,50)的結(jié)果有1種,即b1,b2,故所求的概

17、率為. 1從1,2,3,4這四個數(shù)中一次隨機(jī)地取兩個數(shù),則其中一個數(shù)是另一個數(shù)的兩倍的概率是_解析:基本事件的總數(shù)為6,滿足條件的有1,2,2,4,2個,故p.答案:2盒子里共有大小相同的3只白球,1只黑球若從中隨機(jī)摸出兩只球,則它們顏色不同的概率是_解析:基本事件總數(shù)有6個,滿足條件的有3個,故p.答案:3如圖所示,陰影部分是一個等腰三角形abc,其中一邊過圓心o,現(xiàn)在向圓面上隨機(jī)撒一粒豆子,則這粒豆子落到陰影部分的概率是_解析:向圓面上隨機(jī)撒一粒豆子,其結(jié)果有無限個,屬于幾何概型設(shè)圓的半徑為r,全部結(jié)果構(gòu)成的區(qū)域面積是圓面積r2,陰影部分的面積是等腰直角三角形abc的面積r2,則這粒豆子落

18、到陰影部分的概率是。答案:4在區(qū)間0,3上任取一點,則此點落在區(qū)間2,3上的概率是_解析:設(shè)這個事件為a,所考查的區(qū)域d為一線段,sd3,又sa1,p(a)。答案:5現(xiàn)有某類病毒記作xmyn,其中正整數(shù)m,n(m7,n9)可以任意選取,則m,n都取到奇數(shù)的概率為_解析:基本事件總數(shù)為n7963,其中m,n都為奇數(shù)的事件個數(shù)為m4520,所以所求概率p.答案:6小波通過做游戲的方式來確定周末活動,他隨機(jī)地往單位圓內(nèi)投擲一點,若此點到圓心的距離大于,則周末去看電影;若此點到圓心的距離小于,則去打籃球;否則,在家看書則小波周末不在家看書的概率為_解析:去看電影的概率p1,去打籃球的概率p2,故不在家

19、看書的概率為p。答案:7從1,2,3,4,5中任意取出兩個不同的數(shù),其和為5的概率是_解析:從五個數(shù)中任意取出兩個數(shù)的可能結(jié)果有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10個,其中“和為5”的結(jié)果有(1,4),(2,3),故所求概率為.答案:8若a,b1,0,1,2,則使關(guān)于x的方程ax22xb0有實數(shù)解的概率為_解析:要使方程有實數(shù)解,則a0或ab1,所有可能的結(jié)果為(1,1),(1,0),(1,1),(1,2),(0,1),(0,0),(0,1),(0,2),(1,1),(1,0),(1,1),(1,2),

20、(2,1),(2,0),(2,1),(2,2),共16個,其中符合要求的有13個,故所求概率p.答案:9在一次教師聯(lián)歡會上,到會的女教師比男教師多12人,從這些教師中隨機(jī)挑選一人表演節(jié)目,若選到男教師的概率為,則參加聯(lián)歡會的教師共有_人解析:設(shè)男教師為x人,則女教師為(x12)人依題意有:.x54.共有教師25412120(人)答案:12010在區(qū)間0,1上隨機(jī)取兩個數(shù)x,y,記p1為事件“xy”的概率,p2為事件“xy”的概率,則p1,p2,按從小到大排列為_解析:如圖,滿足條件的x,y構(gòu)成的點(x,y)在正方形obca內(nèi),其面積為1.事件“xy”對應(yīng)的圖形為陰影ode,其面積為,故p1;事

21、件“xy對應(yīng)的圖形為斜線表示部分,其面積顯然大于,故p2,則p1p2。答案:p1p211(山東高考)某中學(xué)調(diào)查了某班全部45名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)參加書法社團(tuán)未參加書法社團(tuán)參加演講社團(tuán)85未參加演講社團(tuán)230(1)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一個社團(tuán)的概率;(2)在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)a1,a2,a3,a4,a5,3名女同學(xué)b1,b2,b3.現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求a1被選中且b1未被選中的概率解:(1)由調(diào)查數(shù)據(jù)可知,既未參加書法社團(tuán)又未參加演講社團(tuán)的有30人,故至少參加上述一個社團(tuán)的

22、共有453015(人),所以從該班隨機(jī)選1名同學(xué),該同學(xué)至少參加上述一個社團(tuán)的概率為p。(2)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,其一切可能的結(jié)果組成的基本事件有:a1,b1,a1,b2,a1,b3,a2,b1,a2,b2,a2,b3,a3,b1,a3,b2,a3,b3,a4,b1,a4,b2,a4,b3,a5,b1,a5,b2,a5,b3,共15個根據(jù)題意,這些基本事件的出現(xiàn)是等可能的事件“a1被選中且b1未被選中”所包含的基本事件有:a1,b2,a1,b3,共2個因此a1被選中且b1未被選中的概率為p.12編號分別為a1,a2,,a16的16名籃球運動員在某次訓(xùn)練比賽中的得分記錄如下

23、:運動員編號a1a2a3a4a5a6a7a8得分1535212825361834運動員編號a9a10a11a12a13a14a15a16得分1726253322123138(1)將得分在對應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格:區(qū)間10,20)20,30)30,40人數(shù)(2)從得分在區(qū)間20,30)內(nèi)的運動員中隨機(jī)抽取2人,用運動員編號列出所有可能的抽取結(jié)果;求這2人得分之和大于50的概率解:(1)4,6,6.(2)得分在區(qū)間20,30)內(nèi)的運動員編號為a3,a4,a5,a10,a11,a13,從中隨機(jī)抽取2人,所有可能的抽取結(jié)果有:a3,a4,a3,a5,a3,a10,a3,a11,a3,a13,a4

24、,a5,a4,a10,a4,a11,a4,a13,a5,a10,a5,a11,a5,a13,a10,a11,a10,a13,a11,a13共15種“從得分在區(qū)間20,30)內(nèi)的運動員中隨機(jī)抽取2人,這2人得分之和大于50(記為事件b)的所有可能結(jié)果有a4,a5,a4,a10,a4,a11,a5,a10,a10,a11共5種所以p(b)。13在某次測驗中,有6位同學(xué)的平均成績?yōu)?5分用xn表示編號為n(n1,2,,6)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢壕幪杗12345成績xn7076727072(1)求第6位同學(xué)的成績x6,及這6位同學(xué)成績的標(biāo)準(zhǔn)差s;(2)從前5位同學(xué)中,隨機(jī)地選2位同學(xué)

25、,求恰有1位同學(xué)成績在區(qū)間(68,75)中的概率解:(1)這6位同學(xué)的平均成績?yōu)?5分,(7076727072x6)75,解得x690.這6位同學(xué)成績的方差s2(7075)2(7675)2(7275)2(7075)2(7275)2(9075)249,標(biāo)準(zhǔn)差s7。(2)從前5位同學(xué)中,隨機(jī)地選出2位同學(xué)的選法有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10種,恰有1位同學(xué)成績在區(qū)間(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4種,所

26、求概率為p。14設(shè)f(x)和 g(x)都是定義在同一區(qū)間上的兩個函數(shù),若對任意x1,2,都有|f(x)g(x)8,則稱f(x)和g(x)是“友好函數(shù)”,設(shè)f(x)ax,g(x)。(1)若a1,4,b1,1,4,求f(x)和g(x)是“友好函數(shù)”的概率;(2)若a1,4,b1,4,求f(x)和g(x)是“友好函數(shù)”的概率解:(1)設(shè)事件a表示f(x)和g(x)是“友好函數(shù)”,則|f(x)g(x)(x1,2)所有的情況有:x,x,x,4x,4x,4x,共6種且每種情況被取到的可能性相同又當(dāng)a0,b0時,ax在上遞減,在上遞增;x和4x在(0,)上遞增,所以對x1,2可使f(x)g(x)8恒成立的有

27、x,x,x,4x,故事件a包含的基本事件有4種,所以p(a),故所求概率是。(2)設(shè)事件b表示f(x)和g(x)是“友好函數(shù)”,因為a是從區(qū)間1,4中任取的數(shù),b是從區(qū)間1,4中任取的數(shù),所以點(a,b)所在區(qū)域是長為3,寬為3的矩形區(qū)域要使x1,2時,f(x)g(x)|8恒成立,需f(1)g(1)ab8且f(2)g(2)2a8,所以事件b表示的點的區(qū)域是如圖所示的陰影部分所以p(b),故所求的概率是.(時間120分鐘滿分160分)一、填空題(本大題共14小題,每小題5分,共70分,請把答案填寫在題中橫線上)1從一箱產(chǎn)品中隨機(jī)抽取一件,設(shè)事件a抽到一等品,事件b抽到二等品,事件c抽到三等品,且

28、已知p(a)0.65,p(b)0。2,p(c)0。1.則事件“抽到的不是一等品”的概率為_解析:設(shè)事件“抽到的不是一等品”為d,則a與d對立,p(d)1p(a)0.35。答案:0。352甲、乙、丙三人在3天節(jié)日中值班,每人值班1天,則甲緊接著排在乙前面值班的概率是_解析:甲、乙、丙三人在3天中值班的情況為:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6種,其中符合題意的有2種,故所求概率為。答案:3根據(jù)下列算法語句,當(dāng)輸入x為60時,輸出y的值為_解析:由題意知,該算法語句的功能是求分段函數(shù)y的值,所以當(dāng)x60時,輸出y的值為250。6(6050)31.答案:314

29、從1,2,3,6這4個數(shù)中一次隨機(jī)地取2個數(shù),則所取2個數(shù)的乘積為6的概率是_解析:取兩個數(shù)的所有情況有:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6種情況乘積為6的有:(1,6),(2,3)共2種情況所求事件概率為.答案:5執(zhí)行如圖所示的程序框圖,則輸出s的值為_解析:由程序框圖與循環(huán)結(jié)束的條件“k4”可知,最后輸出的slog255.答案:6(福建高考)某校高一年級有900名學(xué)生,其中女生400名,按男女比例用分層抽樣的方法,從該年級學(xué)生中抽取一個容量為45的樣本,則應(yīng)抽取的男生人數(shù)為_解析:設(shè)男生抽取x人,則有,解得x25。答案:257(湖北高考)某電子商務(wù)

30、公司對10 000名網(wǎng)絡(luò)購物者2014年度的消費情況進(jìn)行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間0.3,0.9內(nèi),其頻率分布直方圖如圖所示(1)直方圖中的a_;(2)在這些購物者中,消費金額在區(qū)間0.5,0.9內(nèi)的購物者的人數(shù)為_解析:(1)由(1.52。5a2.00。80。2)0.11,解得a3.(2)區(qū)間0.3,0.5內(nèi)頻率為0。1(1。52.5)0。4,故0。5,0。9內(nèi)的頻率為10.40。6。因此,消費金額在區(qū)間0.5,0。9內(nèi)的購物者的人數(shù)為0.610 0006 000。答案:(1)3(2)6 0008(陜西高考)某公司10位員工的月工資(單位:元)為x1,x2,x10 ,其均值和方

31、差分別為和s2,若從下月起每位員工的月工資增加100元,則這10位員工下月工資的均值和方差分別為_解析:對平均數(shù)和方差的意義深入理解可巧解因為每個數(shù)據(jù)都加上了100,故平均數(shù)也增加100,而離散程度應(yīng)保持不變答案:100s29甲、乙兩人玩猜數(shù)字游戲,先由甲在心中任想一個數(shù)字,記為a,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為b,且a,b1,2,3,4,若|ab|1,則稱甲、乙“心有靈犀現(xiàn)任意找兩人玩這個游戲,得出他們“心有靈犀”的概率為_解析:甲、乙所猜數(shù)字的基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3

32、,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16個,其中滿足ab|1的基本事件有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10個,故所求概率為.答案:10正方形abcd面積為s,在正方形內(nèi)任取一點m,amb面積大于或等于s的概率為_解析:如圖,設(shè)正方形abcd的邊長為a,則sa2,abm的高為h,由題知,hasa2,ha,p。答案:11如下圖是cba籃球聯(lián)賽中,甲、乙兩名運動員某賽季一些場次得分的莖葉圖,則平均得分高的運動員是_解析:甲20。4,乙19。3,甲乙答案:甲12.如圖,a是圓o上固

33、定的一點,在圓上其他位置任取一點a,連接aa,它是一條弦,它的長度小于或等于半徑長度的概率為_解析:如圖,當(dāng)aa的長度等于半徑長度時,aoa60,由圓的對稱性及幾何概型得p.答案:13為了考察某校各班參加課外書法小組的人數(shù),從全校隨機(jī)抽取5個班級,把每個班級參加該小組的人數(shù)作為樣本數(shù)據(jù)已知樣本平均數(shù)為7,樣本方差為4,且樣本數(shù)據(jù)互不相同,則樣本數(shù)據(jù)中的最大值為_解析:設(shè)5個班級的數(shù)據(jù)分別為0abcde.由平均數(shù)及方差的公式得7,4.設(shè)a7,b7,c7,d7,e7分別為p,q,r,s,t,則p,q,r,s,t均為整數(shù),則設(shè)f(x)(xp)2(xq)2(xr)2(xs)24x22(pqrs)x(p

34、2q2r2s2)4x22tx20t2,由(xp)2,(xq)2,(xr)2,(xs)2不能完全相同知f(x)0,則判別式0,解得4t4,所以3t3,所以最大值為10。答案:1014設(shè)集合a1,2,b1,2,3,分別從集合a和b中隨機(jī)取一個數(shù)a和b,確定平面上的一個點p(a,b),記“點p(a,b)落在直線xyn上”為事件cn(2n5,nn),若事件cn的概率最大,則n的所有可能值為_解析:事件cn的總事件數(shù)為6.只要求出當(dāng)n2,3,4,5時的基本事件個數(shù)即可當(dāng)n2時,落在直線xy2上的點為(1,1);當(dāng)n3時,落在直線xy3上的點為(1,2),(2,1);當(dāng)n4時,落在直線xy4上的點為(1,

35、3),(2,2);當(dāng)n5時,落在直線xy5上的點為(2,3);顯然當(dāng)n3或4時,事件cn的概率最大為.答案:3或4二、解答題(本大題共6小題,共90分,解答時應(yīng)寫出文字說明、證明過程或演算步驟)15(本小題滿分14分)以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù)乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以x表示 (1)如果x8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;(2)如果x9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率(注:方差s2(x1)2(x2)2(xn)2,其中為x1,x2,xn的平均數(shù))解:(1)當(dāng)x8時,由莖葉圖可知,乙組同學(xué)的植樹棵數(shù)是:8,8,9,

36、10,所以平均數(shù)為:;方差為:s22222。(2)記甲組四名同學(xué)為a1,a2,a3,a4,他們植樹的棵數(shù)依次為9,9,11,11;乙組四名同學(xué)為b1,b2,b3,b4,他們植樹的棵數(shù)依次為9,8,9,10。分別從甲、乙兩組中隨機(jī)選取一名同學(xué),所有可能的結(jié)果有16個:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(a3,b1),(a3,b2),(a3,b3),(a3,b4),(a4,b1),(a4,b2),(a4,b3),(a4,b4),用c表示“選出的兩名同學(xué)的植樹總棵數(shù)為19”這一事件,則c中的結(jié)果有4個,它們

37、是:(a1,b4),(a2,b4),(a3,b2),(a4,b2)故所求概率為p(c)。16(本小題滿分14分)(廣東高考)從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:分組(重量)80,85)85,90)90,95)95,100)頻數(shù)(個)5102015(1)根據(jù)頻數(shù)分布表計算蘋果的重量在90,95)的頻率;(2)用分層抽樣的方法從重量在80,85)和95,100)的蘋果中共抽取4個,其中重量在80,85)的有幾個?(3)在(2)中抽出的4個蘋果中,任取2個,求重量在80,85)和95,100)中各有1個的概率解:(1)由題意知蘋果的樣本總數(shù)n50,在90,95)的頻數(shù)是

38、20,蘋果的重量在90,95)頻率是0.4。(2)設(shè)從重量在80,85)的蘋果中抽取x個,則從重量在95,100)的蘋果中抽取(4x)個表格中80,85),95,100)的頻數(shù)分別是5,15,515x(4x),解得x1.即重量在80,85)的有1個(3)在(2)中抽出的4個蘋果中,重量在80,85)的有1個,記為a,重量在95,100)的有3個,記為b1,b2,b3,任取2個,有ab1,ab2,ab3,b1b2,b1b3,b2b3共6種不同方法記基本事件總數(shù)為n,則n6,其中重量在80,85)和95,100)中各有1個的事件記為a,事件a包含的基本事件為ab1,ab2,ab3,共3個,由古典概

39、型的概率計算公式得p(a)。17(本小題滿分14分)為慶祝國慶,某中學(xué)團(tuán)委組織了“歌頌祖國,愛我中華”知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(成績均為整數(shù))分成六段40,50),50,60),90,100后畫出如圖的部分頻率分布直方圖,觀察圖形的信息,回答下列問題:(1)求第四小組的頻率,并補全這個頻率分布直方圖;(2)估計這次考試的及格率(60分及以上為及格)和平均分解:(1)設(shè)第i組的頻率為fi(i1,2,3,4,5,6),因為各組的頻率和等于1,故第四組的頻率:f41(0。0250。01520。010。005)100。3.頻率分布直方圖如圖所示(2)由題意知,及格以上的分?jǐn)?shù)

40、所在的第三、四、五、六組的頻率之和為(0。0150。030。0250。005)100.75,抽樣學(xué)生成績的合格率是75.故估計這次考試的及格率為75。利用組中值估算抽樣學(xué)生的平均分:45f155f265f375f485f595f6450.1550。15650。15750。3850.25950.0571.從而估計這次考試的平均分是71分18(本小題滿分16分)某公司有一批專業(yè)技術(shù)人員,對他們進(jìn)行年齡狀況和接受教育程度(學(xué)歷)的調(diào)查,其結(jié)果(人數(shù)分布)如下表:學(xué)歷35歲以下3550歲50歲以上本科803020研究生x20y(1)用分層抽樣的方法在3550歲年齡段的專業(yè)技術(shù)人員中抽取一個容量為5的樣

41、本,將該樣本看成一個總體,從中任取2人,求至少有1人的學(xué)歷為研究生的概率;(2)在這個公司的專業(yè)技術(shù)人員中按年齡狀況用分層抽樣的方法抽取n個人,其中35歲以下48人,50歲以上10人,再從這n個人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為,求x,y的值解:(1)用分層抽樣的方法在3550歲的人中抽取一個容量為5的樣本,設(shè)抽取學(xué)歷為本科的人數(shù)為m,解得m3。抽取了學(xué)歷為研究生的有2人,學(xué)歷為本科的有3人,分別記作s1,s2;b1,b2,b3。從中任取2人的所有基本事件共10個:(s1,b1),(s1,b2),(s1,b3),(s2,b1),(s2,b2),(s2,b3),(s1,s2),(b1,b2),(b2,b3),(b1,b3)其中至少有1人的學(xué)歷為研究生的基本事件有7個:(s1,b1),(s1,b2),(s1,b3),(s2,b1),(s2,b2),(s2,b3),(s1,s2)從中任取2人,至少有1人的學(xué)歷為研究生的概率為。(2)依題意,得,解得n78.3550歲中被抽取的人數(shù)為78481020.。解得x40,y5。x40,y5。19(本小題滿分16分)某商場為吸引顧客消費推出一項優(yōu)惠活動活動規(guī)則如下:消費每滿100元可以轉(zhuǎn)動如圖所示的圓盤一次,其中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論