四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試試題 理_第1頁
四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試試題 理_第2頁
四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試試題 理_第3頁
四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試試題 理_第4頁
四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試試題 理_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試試題 理四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試試題 理年級:姓名:18四川省遂寧市2021屆高三數(shù)學(xué)下學(xué)期4月第三次診斷性考試(三診)試題 理本試卷分第i卷(選擇題)和第ii卷(非選擇題)兩部分。總分150分??荚嚂r間120分鐘。第卷(選擇題,滿分60分)注意事項:1答題前,考生務(wù)必將自己的姓名、班級、考號用0.5毫米的黑色墨水簽字筆填寫在答題卡上。并檢查條形碼粘貼是否正確。2選擇題使用2b鉛筆填涂在答題卡對應(yīng)題目標號的位置上,非選擇題用0.5毫米黑色墨水簽字筆書寫在答題卡對應(yīng)框內(nèi),超出答題區(qū)域書寫的答案無效;在草稿紙、

2、試題卷上答題無效。3考試結(jié)束后,將答題卡收回。一、選擇題:本大題共12小題,每小題5分,共60分。在每個小題給出的四個選項中,只有一個是符合題目要求的。1已知集合,則下列判斷正確的是a b c且 d 2已知,則a b c d 3. 已知隨機變量服從正態(tài)分布,則a. b. c. d. 4已知等差數(shù)列滿足,則它的前項的和a b c d 5已知圓的圓心為直線與的交點,半徑為,且圓截直線所得弦的長度為,則實數(shù)a b c d 6. 在遞增的數(shù)列中,若,前項和則a b c d 7. 將直角三角形、矩形、直角梯形如圖一放置,它們圍繞固定直線l旋轉(zhuǎn)一周形成幾何體,其三視圖如圖二,則這個幾何體的體積是附:柱體的

3、體積公式(為底面面積,為柱體的高)錐體的體積公式(為底面面積,為錐體的高)臺體的體積公式(,為臺體的上、下底面面積,為臺體的高)a. b. c. d. 8設(shè),為雙曲線c:的左、右焦點,過坐標原點的直線依次與雙曲線c的左、右支交于,兩點,若,則該雙曲線的離心率為a. b. c. d. 9. 已知函數(shù)為上的奇函數(shù),當時,;若, ,則a. b c. d. 10已知在中,角所對的邊分別為,且,. 又點都在球的球面上,且點到平面的距離為,則球的體積為a b c. d 11. 已知是邊長為2的等邊三角形,其中為邊的中點,的平分線交線段于點,交于點,且(其中,),則的最小值為a. b. c. d. 12.

4、已知函數(shù),又當時,恒成立,則實數(shù)的取值范圍是a b cd 第卷(非選擇題,滿分90分)注意事項:1請用藍黑鋼筆或圓珠筆在第卷答題卡上作答,不能答在此試卷上。2試卷中橫線及框內(nèi)注有“”的地方,是需要你在第卷答題卡上作答。本卷包括必考題和選考題兩部分。第13題至第21題為必考題,每個試題考生都作答;第22、23題為選考題,考生根據(jù)要求作答。二、填空題:本大題共4個小題,每小題5分,共20分。13復(fù)數(shù)(其中為虛數(shù)單位),則 14已知向量,且與垂直,則 15在的展開式中,的系數(shù)為 (用數(shù)字作答)16已知斜率為的直線過拋物線:的焦點,與拋物線交于,兩點(點在點的左側(cè)),又為坐標原點,點也為拋物線上一點,

5、且,則實數(shù)的值為 三、解答題:本大題共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟.17(本小題滿分12分)已知數(shù)列中, (1)求數(shù)列的通項公式;(2)若,且數(shù)列的前項和為,求18.(本小題滿分12分)某校數(shù)學(xué)教研組,為更好地提高該校高三學(xué)生圓錐曲線的選填題的得分率,對學(xué)生圓錐曲線的選填題的訓(xùn)練運用最新的教育技術(shù)做了更好的創(chuàng)新,其學(xué)校教務(wù)處為了檢測其質(zhì)量指標,從中抽取了100名學(xué)生的訓(xùn)練成績(總分50分),經(jīng)統(tǒng)計質(zhì)量指標得到如圖所示的頻率分布直方圖. (1)求所抽取的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)將頻率視為概率,從該校高三學(xué)生中任意抽取4名學(xué)生,記這4個學(xué)生圓

6、錐曲線的選填題的訓(xùn)練的質(zhì)量指標值位于內(nèi)的人數(shù)為,求的分布列和數(shù)學(xué)期望.19. (本小題滿分12分)如圖, 在直四棱柱中, 底面四邊形為梯形, 點為上一點, 且,, (1)求證:平面;(2)求二面角的正弦值.20.(本小題滿分12分)已知橢圓:的左、右焦點分別為,過且與軸垂直的直線與橢圓交于兩點,的面積為,點為橢圓的下頂點, (1)求橢圓的標準方程;(2)經(jīng)過拋物線的焦點的直線交橢圓于兩點,求的取值范圍21.(本小題滿分12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)當時,求證:;(3)求證:當時,方程有且僅有個實數(shù)根.請考生在第22、23兩題中任選一題作答,如果多做,則按所做的第一題計分

7、。22(本小題滿分10分)選修44:坐標系與參數(shù)方程在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù));以原點為極點,軸的正半軸為極軸,建立極坐標系直線的極坐標方程為(1)求曲線的極坐標方程和直線的直角坐標方程;(2)若,求以曲線與軸的交點為圓心,且這個交點到直線的距離為半徑的圓的方程。23(本小題滿分10分)選修45:不等式選講已知函數(shù)(1)求不等式的解集;(2)當取最小值時,求使得成立的正實數(shù)的取值范圍遂寧市高中2021屆三診考試數(shù)學(xué)(理科)試題參考答案及評分意見一、選擇題(125=60分)題號123456789101112答案acacbbcbddaa二、填空題:本大題共4個小題,每小題5分,

8、共20分。13. 14 15 16或三、解答題:本大題共70分。17(本小題滿分12分)【解析】(1)因為,令,則,又,所以, 2分對兩邊同時除以,得, 4分又因為,所以是首項為,公差為的等差數(shù)列,5分所以,故; 6分(2)由(1)得: 7分所以,則兩式相減得10分 所以故 12分18. (本小題滿分12分)【解析】(1)根據(jù)頻率分布直方圖可得各組的頻率為:的頻率為:;的頻率為:;的頻率為:;的頻率:;的頻率為:,. 4分(2)根據(jù)題意得每個學(xué)生圓錐曲線的選填題的訓(xùn)練的質(zhì)量指標值位于內(nèi)的概率為, 5分所以,的可能取值為:0,1,2,3,4, 10分的分布列為:0123411分. 12分19.

9、(本小題滿分12分)【解析】(1)因為四棱柱為直四棱柱,所以, 1分又已知,所以點為的中點, 2分又,且,所以且,所以四邊形為平行四邊形,所以, 3分又在平面中,在平面中,由面面平行的判定定理的推論知平面平面,又平面,所以平面 5分(2)由(1)知點為的中點,所以為的邊上的中線,而,所以由在一個三角形中,如果一邊上的中線等于這邊的一半,則這個三角形為直角三角形,且這邊所對的角為直角知,為直角三角形,且為直角,故,又在直四棱柱中,底面,所以兩兩互相垂直,則建立空間直角坐標系如圖所示, 7分則,設(shè)平面的一個法向量為,又,則由得,即,令,則,所以 9分同理,設(shè)平面的一個法向量為,又,則由得,即,令,

10、則,所以, 10分所以, 11分設(shè)二面角的平面角為,則,故所求二面角的正弦值為 12分20. (本小題滿分12分)【解析】(1)因為為直角三角形,所以,則, 2分又,所以,又,所以,則, 4分,故橢圓的標準方程為 5分(2)因為拋物線的焦點坐標為,所以點的坐標為,設(shè), 又因為若直線與軸重合,7分若直線不與軸重合,設(shè)直線的方程為,則,消去得,所以,則由兩點間的距離公式有,同理, 9分所以,因為,所以,所以, 11分綜上可知,即的取值范圍是 12分21. (本小題滿分12分)【解析】(1)因為,故在點處的切線斜率為,點為,故所求的切線方程為3分(2)令,的定義域為, 4分 當時,恒成立,在上單調(diào)遞減,當時,恒成立,在上單調(diào)遞增,當時,恒成立, 6分故當時,; 7分(3)由,即,則設(shè),的定義域為,設(shè),的定義域為, 當時,恒成立,在上單調(diào)遞減,又,存在唯一的使得, 9分當時,則,在上單調(diào)遞增,當時,則,在上單調(diào)遞減, 在處取得極大值也是最大值,從而又, 11分在與上各有一個零點,即當時,方程有且僅有個實數(shù)根12分22(本小題滿分10分)【解析】(1)由,得,因為,所以,即,又,所以,即曲線的極坐標方程為; 3分因為直線的極坐標方程為,即,又,所以直線的直角坐標方程為。5分(2)因為,由(1)知曲線的普通方程為();它與軸的交點為, 7分又直線的直角坐標方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論