[高一數(shù)學(xué)]等差數(shù)列說課稿2_第1頁
[高一數(shù)學(xué)]等差數(shù)列說課稿2_第2頁
[高一數(shù)學(xué)]等差數(shù)列說課稿2_第3頁
[高一數(shù)學(xué)]等差數(shù)列說課稿2_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、等差數(shù)列第一課時(shí)說課稿一、教材分析1、教材的地位和作用:數(shù)列是中職數(shù)學(xué)教學(xué)的重要內(nèi)容,它有著廣泛的應(yīng)用。而本節(jié)課學(xué)習(xí)的等差數(shù)列,又是數(shù)列中的一個(gè)典型,它是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種公式通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列知識(shí)的進(jìn)一步深入和拓廣,同時(shí)它也為今后學(xué)習(xí)等比數(shù)列提供了類比的依據(jù),可以說它在教材中起到承上啟下的作用。2、教學(xué)目標(biāo)根據(jù)教學(xué)大綱的要求和中職學(xué)生的實(shí)際水平,確定了本節(jié)課的教學(xué)目標(biāo)a、在知識(shí)上:理解等差數(shù)列的定義和通項(xiàng)公式。 b、在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;提高學(xué)生分析問題和解決問題的能力。c、在情感上:通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生由具體到抽象

2、、由特殊到一般的哲學(xué)情感。3、教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):等差數(shù)列的概念。等差數(shù)列的通項(xiàng)公式及應(yīng)用。難點(diǎn):等差數(shù)列通項(xiàng)公式的推導(dǎo)。二、學(xué)情分析本節(jié)課是關(guān)于等差數(shù)列概念及通項(xiàng)公式的一節(jié)新授課,由于學(xué)生已經(jīng)學(xué)習(xí)了數(shù)列的概念、通項(xiàng)公式等知識(shí),他們具備了一定的學(xué)習(xí)經(jīng)驗(yàn)和研究方法,因此他們有能力通過具體的例子探究出等差數(shù)列的定義和通項(xiàng)公式,但由于中職學(xué)生基礎(chǔ)差,可能在推導(dǎo)、歸納通項(xiàng)公式時(shí)存在一定的困難,因此,教師要注意引導(dǎo)。三、教法分析針對(duì)中職學(xué)生的學(xué)習(xí)特點(diǎn),大多數(shù)學(xué)生上課注意力集中時(shí)間較短,因此我在本節(jié)課采取了段落化教學(xué)模式,并且采取了“學(xué)生為主體,教師為主導(dǎo)”的合作式教學(xué)方法。四、學(xué)法指導(dǎo)在引導(dǎo)啟發(fā)時(shí),留出

3、學(xué)生的思考空間,讓學(xué)生去觀察、探索、歸納,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心展開討論,嘗試自己解決問題。五、教學(xué)程序本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)(二)新課探究(活動(dòng)1、2)(三)師生共同探究(活動(dòng)3)(四)應(yīng)用舉例(活動(dòng)4)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。(一)復(fù)習(xí)引入: 通過讓學(xué)生回答數(shù)列概念及通項(xiàng)公式的概念,讓學(xué)生對(duì)數(shù)列概念及通項(xiàng)公式進(jìn)一步熟悉,也為學(xué)好本節(jié)課內(nèi)容做好準(zhǔn)備。 (二) 新課探究利用多媒體給出請(qǐng)同學(xué)們仔細(xì)觀察這些數(shù)列的特點(diǎn)?嘗試寫出每個(gè)數(shù)列的一個(gè)通項(xiàng)公式?1,2,3,4,5,610,8,6,4, 2 ,12,2,2,2,2觀察:請(qǐng)同學(xué)們仔細(xì)觀察一下,看看以上四個(gè)數(shù)列

4、有什么共同特征?利用前面所學(xué)知識(shí)引導(dǎo)學(xué)生嘗試找出每個(gè)數(shù)列的一個(gè)通項(xiàng)公式。(學(xué)生討論后回答,共同特征安排成績(jī)較差的學(xué)生回答,寫出每個(gè)數(shù)列的一個(gè)通項(xiàng)公式安排成績(jī)中等偏上的同學(xué)回答,這樣安排可以使全體同學(xué)都參與討論。)總結(jié)共同特征:從第二項(xiàng)起,每一項(xiàng)與它前面一項(xiàng)的差等于同一個(gè)常數(shù)(即等差);(誤:每相鄰兩項(xiàng)的差相等應(yīng)指明作差的順序是后項(xiàng)減前項(xiàng)),我們給具有這種特征的數(shù)列一個(gè)名字等差數(shù)列1、由引入師生共同總結(jié)得出等差數(shù)列的概念:如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。對(duì)定義進(jìn)一步強(qiáng)調(diào): “從第二項(xiàng)起”滿足條件

5、;公差d一定是由后項(xiàng)減前項(xiàng)所得;每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)。在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:an+1-an=d(n1)觀察下列數(shù)列是否為等差數(shù)列,為什么? 1,2,4,6,8,10, 0,1,2,3,4, 3,3,3,3,同時(shí)為了檢驗(yàn)學(xué)生學(xué)習(xí)情況,我用了一個(gè)探究練習(xí)作為課堂的階段評(píng)價(jià)。通過此練習(xí),讓學(xué)生進(jìn)一步體會(huì)等差數(shù)列定義的應(yīng)用。(三)師生共同探究首先,我通過問題:前面寫出數(shù)列通項(xiàng)公式用什么方法?學(xué)生想到觀察、歸納,那么對(duì)等差數(shù)列這個(gè)特殊的數(shù)列,我們又該如何得到它的通項(xiàng)公式呢?通過問題引起學(xué)生對(duì)知識(shí)的探索興趣?在等差數(shù)列通項(xiàng)公式的推

6、導(dǎo)教材上只有一種方法-遞推法,而我在本節(jié)課教學(xué)過程中,通過學(xué)生談?wù)?、探討,歸納了兩種方法,這兩種方法都是定義的直接應(yīng)用,這樣安排一方面讓學(xué)生加深對(duì)定義的認(rèn)識(shí),另一方面也讓學(xué)生初步認(rèn)識(shí)疊加法求數(shù)列通項(xiàng)公式的原理。兩種方法具體如下:方法一:(疊加法)若一等差數(shù)列an的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:(n1)個(gè)等式若將這n1個(gè)等式左右兩邊分別相加,則可得:ana1=(n1)d 即:an=a1+(n1)d當(dāng)n=1時(shí),等式兩邊均為a1,即上述等式均成立,則對(duì)于一切nn*時(shí)上述公式都成立,所以它可作為數(shù)列an的通項(xiàng)公式.方法二:(遞推法)由定義可得:a2a1=d即:a2=a1+d;a3a2=d即:a

7、3=a2+d=a1+2d;a4a3=d即:a4=a3+d=a1+3d;anan1=d,即:an=an1+d=a1+(n1)d總結(jié),已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)a1和公差d,便可求得其通項(xiàng).為了鞏固學(xué)生對(duì)等差數(shù)列通項(xiàng)公式的理解,我設(shè)置了階段性練習(xí),讓學(xué)生去完成。求下列等差數(shù)列的通項(xiàng)公式。(1)3,0,3,6, (2)5,8,11,14(3)1, 4, 7, 13(四)應(yīng)用舉例這一環(huán)節(jié)是使學(xué)生通過例題的分析,增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決問題的能力。1、下列數(shù)列都是等差數(shù)列,試求出其中的未知項(xiàng):(1)3,a, 5 (2)3,b,c,-92、已知是等差數(shù)列,,,求3、

8、401是不是等差數(shù)列5,9,13的項(xiàng)?如果是,是第幾項(xiàng)?設(shè)置第一道例題的主要目的是進(jìn)一步加深學(xué)生對(duì)等差數(shù)列定義的理解。第二道題目主要為了提高學(xué)生的運(yùn)算能力和運(yùn)用數(shù)學(xué)知識(shí)的能力,同時(shí)讓學(xué)生體會(huì)待定系數(shù)法在求數(shù)列通項(xiàng)公式時(shí)的應(yīng)用,第三道題目是進(jìn)一步加深通項(xiàng)公式的應(yīng)用。(五)歸納小結(jié)請(qǐng)幾位同學(xué)談一談通過本節(jié)課的教學(xué):你學(xué)到了什么?掌握了什么?然后教師進(jìn)一步完成小結(jié):1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)2.等差數(shù)列的通項(xiàng)公式會(huì)知三求一。(六)布置作業(yè)南京市分層教學(xué)目標(biāo)與訓(xùn)練p102 第5,6,7,8題五、板書設(shè)計(jì)在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論