分類高級課題AdvancedTopicsonClassification教學(xué)課件_第1頁
分類高級課題AdvancedTopicsonClassification教學(xué)課件_第2頁
分類高級課題AdvancedTopicsonClassification教學(xué)課件_第3頁
分類高級課題AdvancedTopicsonClassification教學(xué)課件_第4頁
分類高級課題AdvancedTopicsonClassification教學(xué)課件_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、advanced topics on classificationquan zou (鄒 權(quán)) (ph.d.& assistant professor)2021-10-23http:/2/20outlineimbalance binary classificationmulti class, multi label classificationmulti instance classificationsemi-supervised and transductive classificationensemble learningothers2021-10-23http:/3/20imbalanc

2、e binary classificationapplication:credit card cheatspam identificationfinding oilbioinformatics2021-10-23http:/4/20imbalance binary classification strategy of sampling over-sampling under-sampling random-sampling special-sampling (smote) strategy of cost equal to above one-class leaning2021-10-23ht

3、tp:/5/20multi class, multi label multi class one vs one (time consuming) one vs all (imbalance) tree multi label jrs (/challenge/jrs12contest) text, image classification knn meka, mulan2021-10-23http:/6/20mulan2021-10-23http:/7/202021-10-23http:/8/20meka2021-10-23http:/9/20multi ins

4、tance classificationdrug design, image understandingpackage, instance dd2021-10-23http:/10/202021-10-23http:/11/20semi-supervised and transductive classificationsemi-supervised classificationunlabeled samples are importantco-training and tri-training2021-10-23http:/12/20transductive classification20

5、21-10-23http:/13/202021-10-23http:/14/20ensemble learningbagging2021-10-23http:/15/20ensemble learningboosting2021-10-23http:/16/20ensemble learningrandom forest2021-10-23http:/17/20ensemble learning for class imbalance problem2021-10-23http:/18/202021-10-23http:/19/20 strategy first, the negative s

6、et is divided randomly into several subsets equally. every subset together with the positive set is a class balance training set. then several different classifiers are selected and trained with these balance training sets. they will vote for the last prediction when facing new samples. the samples

7、will be added to the next two classifiers training sets if they are misclassified. reference 鄒權(quán), 郭茂祖, 劉揚, 王峻. 類別不平衡的分類方法及在生物信息學(xué)中的應(yīng)用. 計算機研究與發(fā)展. 2010,47(8):1407-1414 x.-y. liu, j. wu, and z.-h. zhou. exploratory undersampling for class-imbalance learning. ieee transactions on systems, man, and cybernetics - part b: cybernetics, 2009, 39(2): 539-550 2021-10-23http:/20/20othersactive learninglazy learning

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論