一輪復(fù)習(xí)任意角和弧度制課時講課_第1頁
一輪復(fù)習(xí)任意角和弧度制課時講課_第2頁
一輪復(fù)習(xí)任意角和弧度制課時講課_第3頁
一輪復(fù)習(xí)任意角和弧度制課時講課_第4頁
一輪復(fù)習(xí)任意角和弧度制課時講課_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、一一. .角的定義角的定義 角是由平面內(nèi)一條射線繞其端點從一角是由平面內(nèi)一條射線繞其端點從一個位置旋轉(zhuǎn)到另一個位置所組成的圖形個位置旋轉(zhuǎn)到另一個位置所組成的圖形. .a aob b始邊始邊終邊終邊頂點頂點1課堂教學(xué)規(guī)定:規(guī)定:按按逆時針逆時針方向旋轉(zhuǎn)形成的角叫做方向旋轉(zhuǎn)形成的角叫做正角正角,按,按順時針順時針方向旋轉(zhuǎn)形成的方向旋轉(zhuǎn)形成的角叫做角叫做負角負角如果一條射線沒有作任何旋轉(zhuǎn),則稱它形成了一個如果一條射線沒有作任何旋轉(zhuǎn),則稱它形成了一個零角零角. . .角的方向角的方向度量一個角的大小,既要考慮度量一個角的大小,既要考慮旋轉(zhuǎn)方向旋轉(zhuǎn)方向,又要,又要考慮考慮旋轉(zhuǎn)量旋轉(zhuǎn)量,通過上述規(guī)定,通過

2、上述規(guī)定,角的范圍就擴展到角的范圍就擴展到:任意大小任意大小.2課堂教學(xué)b b2 2a ab b1 1o o 對于對于你能用圖形表示這些角嗎?你能總結(jié)一下作你能用圖形表示這些角嗎?你能總結(jié)一下作圖的要點嗎?圖的要點嗎? 000660,150,210畫圖表示一個大小一定的角畫圖表示一個大小一定的角:(1)先畫一條射線作為角的始邊,先畫一條射線作為角的始邊,(2)再由角的正負確定角的旋轉(zhuǎn)方向,再由角的正負確定角的旋轉(zhuǎn)方向,(3)再由角的絕對值大小確定角的旋轉(zhuǎn)量,再由角的絕對值大小確定角的旋轉(zhuǎn)量,(4)畫出角的終邊,并用帶箭頭的螺旋線加以標(biāo)注畫出角的終邊,并用帶箭頭的螺旋線加以標(biāo)注.3課堂教學(xué)問題問

3、題1: 鐘表經(jīng)過鐘表經(jīng)過4小時,時針與分針各小時,時針與分針各轉(zhuǎn)轉(zhuǎn) (填度填度). 問題:如果你的手表慢了問題:如果你的手表慢了2020分鐘應(yīng)該分鐘應(yīng)該將分鐘旋轉(zhuǎn)多少度才能將時間校準(zhǔn)?將分鐘旋轉(zhuǎn)多少度才能將時間校準(zhǔn)? 120120 120120,-1440-1440. .4課堂教學(xué)二:二:象限角象限角 xoy象限角象限角:角的頂點為坐標(biāo)原點,角的始邊為:角的頂點為坐標(biāo)原點,角的始邊為x軸的正半軸,這樣一來,角的終邊落在第軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個角是第幾象限角。幾象限,我們就說這個角是第幾象限角。如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個角不屬于如果角的終邊在坐標(biāo)軸上,就

4、認(rèn)為這個角不屬于任何象限,或稱這個角為任何象限,或稱這個角為軸線角軸線角.那么下列各角:那么下列各角:-50,405,210, -200,450分別是第幾象限的角?分別是第幾象限的角?50 xyoxyo210 xyo405xyo200 xyo5課堂教學(xué)問題:問題:第二象限的角一定比第一象限的角大嗎?第二象限的角一定比第一象限的角大嗎? 象限角只能反映角的終邊所在象限象限角只能反映角的終邊所在象限(位位置置),不能反映角的大小,不能反映角的大小. 問題問題2:銳角是第幾象限的角?第一象限的角銳角是第幾象限的角?第一象限的角是否都是銳角?小于是否都是銳角?小于90的角是銳角嗎?的角是銳角嗎? 6課

5、堂教學(xué)三:三:終邊相同的角終邊相同的角 問題問題1 1:3232,328328,392392是第幾是第幾象限的角?這些角有什么內(nèi)在聯(lián)系?象限的角?這些角有什么內(nèi)在聯(lián)系?32392xyo o3280003603232800036032392與與32角終邊相同的角有多少個?角終邊相同的角有多少個?這些角與這些角與32角在數(shù)量上相差多少?角在數(shù)量上相差多少? zkk,36032007課堂教學(xué)問題問題2 2:所有與所有與3232角終邊相同的角,角終邊相同的角,連同連同3232角在內(nèi),可構(gòu)成一個集合角在內(nèi),可構(gòu)成一個集合s s,你能用描述法表示集合你能用描述法表示集合s s嗎?嗎? s=|=s=|=k

6、k360360,kzkz,即任,即任一與一與終邊相同的角,都可以表示成角終邊相同的角,都可以表示成角與整數(shù)個周角的和與整數(shù)個周角的和. .問題問題3 3:一般地,所有與角一般地,所有與角終邊相同的終邊相同的角,連同角角,連同角在內(nèi)所構(gòu)成的集合在內(nèi)所構(gòu)成的集合s s可以怎可以怎樣表示?樣表示? zkk,36032008課堂教學(xué) 寫出終邊在y軸上的角的集合 分析:首先寫出在y軸的正半軸上的角的集合,然后寫出在y軸的負半軸上的角的集合解答:終邊在y軸的正半軸上的角的集合為終邊在y軸的負半軸上的角的集合為001|90360 ,skkz 002|270360 ,skkz xyoxyo9課堂教學(xué) 所以,終

7、邊在y軸上的角的集合為12sss00|902180 ,kkz 000|901802 180 ,kk z 00|902180 ,kkz 00|90(21)180 ,kk z 00|90180 ,nn z xyo10課堂教學(xué) 寫出終邊在x軸上的角的集合 寫出終邊在坐標(biāo)軸上的角的集合zkk,1800 xyoxyo zkkzkk,18090,180000zkk,90011課堂教學(xué)xyoxyo,360zkk,36090zkk小結(jié)小結(jié)1:1:終邊在軸線上的角的集合終邊在軸線上的角的集合 xyoxyozkk,36018000zkk,36027000zkk,36018000zkk,360900012課堂教學(xué)小

8、結(jié)小結(jié)2 2:第一、二、三、四象限的角的集第一、二、三、四象限的角的集合分別如何表示?合分別如何表示? 第一象限:第一象限:s=|ks=|k3603600 090900 0k k3603600 0,kz,kz;第二象限:第二象限:s=|90s=|900 0k k3603600 01801800 0+k+k3603600 0,kz,kz;第三象限:第三象限:s=|180s=|1800 0k k3603600 02702700 0+k+k3603600 0,kz,kz;第四象限:第四象限:s=|s=|90900 0k k3603600 0kk3603600 0,kz.kz.13課堂教學(xué) 例3:寫出

9、終邊在直線 上的角的集合s,并把s中適合不等式 的元素 寫出來yx0036072014課堂教學(xué) 中適合的元素 452x180= - 315 451x180= - 135 45+0 x180= 45 45+1x180= 225 45+2x180= 405 45+3x180= 58500360720s=|=45s=|=45k k180180,kz.kz.(確定整數(shù)k)15課堂教學(xué)例4:已知已知 與與240角的終邊相同,判斷角的終邊相同,判斷是第幾象限的角。是第幾象限的角。216課堂教學(xué)弧度制弧度制17課堂教學(xué)一 1、度量角的方法度分秒制把圓周角分為360等份1度的角60等份1分的角60等份1秒的角

10、.2、在同一個圓中,圓心角的大小與它所對的弧長一一對應(yīng)./0024446 .35計算:計算:/0/02444363508018課堂教學(xué)半徑rr1=1r2=2r3=3r4=4弧長l弧長與半徑的比值當(dāng)當(dāng)n=300時時練習(xí)練習(xí):當(dāng)當(dāng)n=600時呢時呢?可以計算弧長可以計算弧長l=180rn6632236663rl19課堂教學(xué)3、實驗結(jié)果表明:當(dāng)半徑不同時,同樣的圓心角所對的弧長與半徑的比是常數(shù).rl642-2-4-6-8-10-10-551015終邊終邊始邊始邊半徑弧長弧長半徑136.632.094.982.38o拖動點增減角的大小拖動點增減角的大小a642-2-4-6-8-10-10-551015

11、終邊終邊始邊始邊半徑弧長弧長半徑136.633.418.142.38o拖動點增減角的大小拖動點增減角的大小a稱這個常數(shù)為該角的弧度數(shù).能否用弧長來定義角的大小呢?20課堂教學(xué)二、1弧度角的定義弧度角的定義我們把等于半徑長的圓弧所對的圓心角叫做我們把等于半徑長的圓弧所對的圓心角叫做1弧度的角?;《鹊慕?。1弧度弧度單位符號是 rad,讀作弧度弧度把角度單位與長度單位統(tǒng)一起來.21課堂教學(xué)三)弧度數(shù)1、在單位圓中,當(dāng)圓心角為周角時,它所對的弧長為2,所以周角的弧度數(shù)為2,周角是2rad 的角.2、任意一個003600的角的弧度數(shù)必然適合不等式 0 x2.3、任一正角的弧度數(shù)都是一個正實數(shù); 任一負角

12、的弧度數(shù)都是一個負實數(shù); 零角的弧度數(shù)是0. 弧度制下的角與實數(shù)之間的關(guān)系是怎樣的呢?rl22課堂教學(xué)4、用弧度來度量角,實際用弧度來度量角,實際上上角的集合角的集合 與與實數(shù)集實數(shù)集r之間建立一一對應(yīng)的關(guān)系:之間建立一一對應(yīng)的關(guān)系:實數(shù)集實數(shù)集r r角的集合角的集合正角正角零角零角負角負角正實數(shù)正實數(shù)零零負實數(shù)負實數(shù)對應(yīng)角的對應(yīng)角的弧度數(shù)弧度數(shù)23課堂教學(xué)角度制與弧度制的換算角度制與弧度制的換算 用用“弧度弧度”與與“度度”去度量每一個去度量每一個角時,除了零角以外,所得到的量數(shù)都角時,除了零角以外,所得到的量數(shù)都是不同的,但它們既然是度量同一個角是不同的,但它們既然是度量同一個角的結(jié)果,二

13、者就可以相互換算的結(jié)果,二者就可以相互換算 若弧是一個整圓,它的圓心角是周角,若弧是一個整圓,它的圓心角是周角,其弧度數(shù)是,而在角度制里它是,其弧度數(shù)是,而在角度制里它是,2360rad2360因此 24課堂教學(xué)rad2360因為 1度角等于多少弧度?度角等于多少弧度?1弧度角等于多少度?弧度角等于多少度?57.301180rad0.01745rad1801rad度度25課堂教學(xué)把化成弧度把化成弧度0367例121670367解解:rad832167rad180036726課堂教學(xué)角度制與弧度制互化時要抓住弧度這個關(guān)鍵180把化成度把化成度例2rad5414418054rad54解:27課堂教學(xué)角度弧度0601201352704265230寫出一些特殊角的弧度數(shù)寫出一些特殊角的弧度數(shù) 645390324315018023360028課堂教學(xué)例3計算:計算:(1);(2)4sin5 . 1tan4542245sin4sin解:(1) 758595.855 . 130.57(2)12.147585tan5 . 1tan29課堂教學(xué). 試推出弧長公式和扇形面積公式試推出弧長公式和扇形面積公式(角用弧度角用弧度). ;213;212;12lrsrsrl:1分析,2 rl因為扇形為整個圓的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論