三角形全等之倍長(zhǎng)中線(含答案和練習(xí))_第1頁
三角形全等之倍長(zhǎng)中線(含答案和練習(xí))_第2頁
三角形全等之倍長(zhǎng)中線(含答案和練習(xí))_第3頁
三角形全等之倍長(zhǎng)中線(含答案和練習(xí))_第4頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、優(yōu)秀學(xué)習(xí)資料歡迎下載三角形全等之倍長(zhǎng)中線1. 如圖, AD 為 ABC 的中線(1)求證: AB+AC >2AD(2)若 AB=5,AC=3,求 AD 的取值范圍B2. 如圖,在 ABC 中, AD 平分 BAC,且 BD=CD求證: AB=ACB3. 如圖, CB 是 AEC 的中線, CD 是 ABC 的中線,且 AB=AC求證: CE=2CD; CB 平分 DCEE4. 如圖,在 ABC 中,D 是 BC 邊的中點(diǎn),E 是 AD 上一點(diǎn),BE=AC, BE 的延長(zhǎng)線交 AC 于點(diǎn) FADCADCCBDAAFE求證: AEF=EAFBDC5.如圖,在 ABC 中, AD 交 BC 于

2、點(diǎn) D,點(diǎn) E 是 BC 的中點(diǎn), EF AD 交 CA 的延長(zhǎng)線于點(diǎn)F,交 AB 于點(diǎn) G, BG=CF求證: AD 為 ABC 的角平分線FFAAGGBEDCBAEDDC6.如圖,在四邊形 ABCD 中,ADBC,點(diǎn) E 在 BC 上,點(diǎn) F 是FBEC優(yōu)秀學(xué)習(xí)資料歡迎下載CD 的中點(diǎn),且 AFAB,已知 AD=2.7, AE=BE=5,求 CE 的長(zhǎng)7. 如圖,在正方形 ABCD 的邊 CB 的延長(zhǎng)線上取一點(diǎn) E,F(xiàn)EB 為等腰直角三角形, FEB=90°,連接 FD ,取 FD 的中點(diǎn) G,連接 EG, CG求證: EG=CG 且 EG CGADGFEBC【參考答案】?jī)?yōu)秀學(xué)習(xí)

3、資料歡迎下載1. ( 1)證明:如圖,A2B1 DCE延長(zhǎng) AD 至 E,使 DE=AD,連接 BE, AE=2AD AD 是 ABC 的中線 BD=CD在 BDE 和 CDA 中BDCD1 2 ED AD BDE CDA(SAS) BE=AC在 ABE 中, AB+BE>AE AB+AC>2AD( 2)解:由可知AE=2AD,BE=AC在 ABE 中,AB BE<AE<AB+BE AC=3,AB=5 5 3<AE<5+3 2<2AD<8 1<AD<42.證明:如圖,延長(zhǎng)AD 到 E,使 DE=AD,連接 BE優(yōu)秀學(xué)習(xí)資料歡迎下載A1

4、 23BC4DE在 ADC 和 EDB 中CDBD3 4 AD ED ADC EDB(SAS) AC=EB, 2=E AD 平分 BAC 1= 2 1= E AB=BE AB=AC3. 證明:如圖,C451EB 32 DAF延長(zhǎng) CD 到 F,使 DF=CD,連接 BF CF=2CD CD 是 ABC 的中線 BD=AD在 BDF 和 ADC 中BDAD2 1 DF DC BDF ADC(SAS) BF=AC, 3=A CB 是 AEC 的中線優(yōu)秀學(xué)習(xí)資料歡迎下載 BE=AB AC=AB BE=AC BE=BF CBE 是 ABC 的一個(gè)外角 CBE= BCA+A=BCA+3 AC=AB BC

5、A= CBA CBE= CBA+3= CBF在 CBE 和 CBF 中CBCBCBECBFBEBF CBE CBF(SAS) CE=CF,4=5 CE=2CDCB 平分 DCE4. 證明:如圖,延長(zhǎng) AD 到 M,使 DM=AD,連接 BMAFEBCDM D 是 BC 邊的中點(diǎn) BD=CD在 ADC 和 MDB 中CDBDADCMDBADMD ADC MDB (SAS) CAD= M,AC=MB BE=AC BE=MB M=BEM CAD= BEM優(yōu)秀學(xué)習(xí)資料歡迎下載 AEF=BEM CAD= AEF即 AEF=EAF5. 證明:如圖,延長(zhǎng) FE 到 M,使 EM=EF,連接 BMFAG 1

6、23BEDCM點(diǎn) E是BC的中點(diǎn) BE=CE在 CFE 和 BME 中FEMECEFBEMCEBE CFE BME(SAS) CF=BM, F=M BG=CF BG=BM 3= M 3= F AD EF 2=F,1=3 1= 2即 AD 為 ABC 的角平分線6. 解:如圖,延長(zhǎng) AF 交 BC 的延長(zhǎng)線于點(diǎn) GA D35 41 F 2BECG AD BC 3= G點(diǎn)F是CD的中點(diǎn) DF=CF優(yōu)秀學(xué)習(xí)資料歡迎下載在 ADF 和 GCF 中3 G1 2 DF CF ADF GCF(AAS ) AD=CG AD=2.7 CG=2.7 AE=BE 5= B AB AF 4+ 5=90°B+

7、G=90° 4= G EG=AE=5 CE=EG CG=5 2.7=2.37. 證明:如圖,延長(zhǎng) EG,交 CD 的延長(zhǎng)線于 MMADGFEBC由題意, FEB=90°, DCB=90° DCB+ FEB=180° EF CD FEG= M點(diǎn)G為FD 中點(diǎn) FG=DG在 FGE 和 DGM 中FEGMFGEDGMFGDG FGE DGM ( AAS ) EF=MD ,EG=MG FEB 是等腰直角三角形 EF=EB優(yōu)秀學(xué)習(xí)資料歡迎下載 BE=MD在正方形 ABCD 中, BC=CD BE+BC=MD+CD即 EC=MC ECM 是等腰直角三角形 EG=M

8、G EG CG, ECG=MCG=45° EG=CG全等三角形之倍長(zhǎng)中線每日一題1. (4 月 21 日)已知:如圖,在梯形 ABCD 中, ADBC,AB=AD+BC, E 是 CD 的中點(diǎn)求證: AEBEADEBC2. (4 月 22 日)已知:如圖, ABC 與 BDE 均為等腰直角三角形, BAAC,EDBD,垂足分別為 A,D,連接 EC,F(xiàn) 為 EC 中點(diǎn),連接 AF,DF ,猜測(cè) AF, DF 的數(shù)量關(guān)系和位置關(guān)系,并說明理由AEDFBC優(yōu)秀學(xué)習(xí)資料歡迎下載3. (4 月 23 日)已知:如圖, D 為線段 AB 的中點(diǎn),在 AB 上任取一點(diǎn) C(不與點(diǎn) A,B,D 重

9、合),分別以 AC,BC 為斜邊在 AB 同側(cè)作等腰 Rt ACE 與等腰 RtBCF,AEC=CFB=90°,連接DE,DF,EF求證: DEF 為等腰直角三角形FEACDBA4. (4 月 24 日)已知:如圖,在四邊形 ABCD 中, ABDC,E為 BC 邊的中點(diǎn), BAE=EAF,AF 與 DC 的延長(zhǎng)線相交于D點(diǎn) F試探究線段 AB 與 AF,CF 之間的數(shù)量關(guān)系,并說明理由 BECF【參考答案】1.證明:延長(zhǎng) AE 交 BC 的延長(zhǎng)線于點(diǎn) F優(yōu)秀學(xué)習(xí)資料歡迎下載A DEBCF AD BC D=DCF,DAE=F E是 CD 的中點(diǎn) DE=CE在 ADE 和 FCE 中

10、D FCEDAEFDECE ADE FCE(AAS ) AD=FC,AE=FE AB=AD+BC AB=CF+BC=BF在 ABE 和 FBE 中ABFBBEBEAEFE ABE FBE( SSS) AEB=FEB=90°即 AEBE2. 解: AFDF ,AF=DF ,理由如下:延長(zhǎng) DF 交AC于點(diǎn) P.AEPDFBC優(yōu)秀學(xué)習(xí)資料歡迎下載 BA AC, ED BD BAC= EDA= 90° DE AC DEC= ECA F為 EC中點(diǎn) EF=CF在 EDF 和 CPF 中DEFPCFEFCF EFD CFP EDF CPF(ASA ) DE=CP,DF=PF ABC

11、與 BDE 均為等腰直角三角形 AB=AC,DE=BD AB BD=AC DE=AC CP即 AD=AP在 DAF 和 PAF 中DFPFAFAFADAP DAF PAF( SSS) DFA=PFA=90°, DAF=PAF=45° AF DF, AF=DF3. 證明:延長(zhǎng) ED 到點(diǎn) G,使 DG=DE,連接 BG,F(xiàn)GFEACDBG D 為線段 AB 的中點(diǎn) AD=BD在 EDA 和 GDB 中EDGD EDA GDB DA DB優(yōu)秀學(xué)習(xí)資料歡迎下載 EDA GDB(SAS) EA=GB, A=GBD ACE 與 BCF 是等腰直角三角形 AE=CE=BG, CF=FB

12、, A=ECA=FCB=FBC=45° ECF=90°, GBF=GBD+FBD =90°在 ECF 和 GBF 中ECGB ECF GBF CF BF ECF GBF(SAS) EF=GF, EFC=GFB CFB= CFG+GFB=90° EFG= EFC+CFG=90°在 EFD 和 GFD 中EFGFFDFDEDGD EFD GFD (SSS) EDF= GDF=90°, EFD=GFD=45° DE=DF DEF 為等腰直角三角形4. 解: AB=AF+CF,理由如下:延長(zhǎng) AE 交 DF 的延長(zhǎng)線于點(diǎn) GADBE

13、CFG E 為 BC 邊的中點(diǎn) BE=CE AB DC B=BCG, BAG= G在 ABE 和 GCE 中 B GCE BAE G BE CE優(yōu)秀學(xué)習(xí)資料歡迎下載 ABE GCE(AAS ) AB=GC BAE=EAF G=EAF AF=GF GC=GF+FC AB=AF+CF三角形全等之倍長(zhǎng)中線(隨堂測(cè)試)1.在 ABC 中, AC=5,中線 AD=4,則邊 AB 的取值范圍是 _2. 已知:如圖,在 ABC 中, ABAC,D,E 在 BC 上,且 DE=EC,過 D 作 DF AB 交 AE 于點(diǎn)F,DF=AC求證: AE 平分 BACAFBDEC【參考答案】1. 3<AB<

14、;132. 證明略(提示:延長(zhǎng) AE 到點(diǎn) G,使 EG=EF,連接 CG,證明 DEF CEG)優(yōu)秀學(xué)習(xí)資料歡迎下載三角形全等之倍長(zhǎng)中線(作業(yè))1. 已知:如圖,在 ABC 中,AB=4,AC=2,點(diǎn) D 為 BC 邊的中點(diǎn),且 AD 是整數(shù),則 AD=_ABDC2. 已知:如圖, BD 平分 ABC 交 AC 于 D,點(diǎn) E 為 CD 上一點(diǎn),且 AD=DE, EF BC 交 BD 于F求證: AB=EFADFEBC3. 已知:如圖,在 ABC 中, AD 是 BC 邊上的中線,分別以 AB,AC 為直角邊向外作等腰直角三角形求證: EF=2ADEAFBDC4. 如圖,在 ABC 中, AB >AC, E 為 BC 邊的中點(diǎn), AD 為 BAC 的平分線,過 E 作 AD 的平行線,交 AB 于 F,交 CA 的延長(zhǎng)線于 G求證: BF=CG優(yōu)秀學(xué)習(xí)資料歡迎下載GAFBEDC5. 如圖,在四邊形 ABCD 中,ADBC,點(diǎn) E 在 BC 上,點(diǎn) F 是 CD 的中點(diǎn),連接 AF,若 DAF= EAF,求證: AFEFADFBEC【參考答案】1. 22.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論