版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1第十二章第十二章 無窮級(jí)數(shù)無窮級(jí)數(shù)2. 2. 熟練掌握正項(xiàng)級(jí)數(shù)的比較審斂法、比值審斂法熟練掌握正項(xiàng)級(jí)數(shù)的比較審斂法、比值審斂法以以 及交錯(cuò)級(jí)數(shù)的萊布尼茲定理及交錯(cuò)級(jí)數(shù)的萊布尼茲定理 1. 1. 掌握級(jí)數(shù)收斂與發(fā)散的概念和性質(zhì)掌握級(jí)數(shù)收斂與發(fā)散的概念和性質(zhì)3. 3. 知道函數(shù)項(xiàng)級(jí)數(shù)的收斂及和函數(shù)的概念知道函數(shù)項(xiàng)級(jí)數(shù)的收斂及和函數(shù)的概念4. 4. 熟練掌握冪級(jí)數(shù)的收斂半徑、收斂區(qū)間、收斂熟練掌握冪級(jí)數(shù)的收斂半徑、收斂區(qū)間、收斂域的求法域的求法.5. 5. 知道函數(shù)的泰勒級(jí)數(shù)及函數(shù)泰勒級(jí)數(shù)收斂到該知道函數(shù)的泰勒級(jí)數(shù)及函數(shù)泰勒級(jí)數(shù)收斂到該函數(shù)的充要條件函數(shù)的充要條件26. 6. 熟練掌握常見函數(shù)的麥
2、克勞林級(jí)數(shù)的展開式及其熟練掌握常見函數(shù)的麥克勞林級(jí)數(shù)的展開式及其收斂域,并能夠應(yīng)用這些函數(shù)的展開式將其它函數(shù)收斂域,并能夠應(yīng)用這些函數(shù)的展開式將其它函數(shù)間接地展開成冪級(jí)數(shù),會(huì)借助于這些函數(shù)的展開式間接地展開成冪級(jí)數(shù),會(huì)借助于這些函數(shù)的展開式求某些冪級(jí)數(shù)的和函數(shù)以及相關(guān)級(jí)數(shù)的和。求某些冪級(jí)數(shù)的和函數(shù)以及相關(guān)級(jí)數(shù)的和。7. 7. 熟練掌握傅里葉級(jí)數(shù)的收斂定理,并能夠準(zhǔn)確寫熟練掌握傅里葉級(jí)數(shù)的收斂定理,并能夠準(zhǔn)確寫出傅里葉級(jí)數(shù)的和函數(shù),會(huì)將出傅里葉級(jí)數(shù)的和函數(shù),會(huì)將定義在各種區(qū)間類型定義在各種區(qū)間類型上的函數(shù)展開成傅里葉級(jí)數(shù)。上的函數(shù)展開成傅里葉級(jí)數(shù)。3 nnnuuuuu32111 1、常數(shù)項(xiàng)級(jí)數(shù)、
3、常數(shù)項(xiàng)級(jí)數(shù) niinnuuuus121級(jí)數(shù)的部分和級(jí)數(shù)的部分和定義定義級(jí)數(shù)的收斂與發(fā)散級(jí)數(shù)的收斂與發(fā)散4性質(zhì)性質(zhì)1 1: : 級(jí)數(shù)的每一項(xiàng)同乘一個(gè)不為零的常數(shù)級(jí)數(shù)的每一項(xiàng)同乘一個(gè)不為零的常數(shù), ,斂散性不變斂散性不變. .性質(zhì)性質(zhì)2 2: :收斂級(jí)數(shù)可以逐項(xiàng)相加與逐項(xiàng)相減收斂級(jí)數(shù)可以逐項(xiàng)相加與逐項(xiàng)相減. .性質(zhì)性質(zhì)3 3: :在級(jí)數(shù)前面加上有限項(xiàng)不影響級(jí)數(shù)的斂在級(jí)數(shù)前面加上有限項(xiàng)不影響級(jí)數(shù)的斂散性散性.性質(zhì)性質(zhì)4 4: :收斂級(jí)數(shù)加括弧后所成的級(jí)數(shù)仍然收斂收斂級(jí)數(shù)加括弧后所成的級(jí)數(shù)仍然收斂于原來的和于原來的和. . 0lim nnu級(jí)數(shù)收斂的必要條件級(jí)數(shù)收斂的必要條件:收斂級(jí)數(shù)的基本性質(zhì)收斂級(jí)
4、數(shù)的基本性質(zhì)5常數(shù)項(xiàng)級(jí)數(shù)審斂法常數(shù)項(xiàng)級(jí)數(shù)審斂法正正 項(xiàng)項(xiàng) 級(jí)級(jí) 數(shù)數(shù)任意項(xiàng)級(jí)數(shù)任意項(xiàng)級(jí)數(shù)1.2.4.充要條件充要條件5.比較法比較法6.比值法比值法7.根值法根值法4.絕對(duì)收斂絕對(duì)收斂5.交錯(cuò)級(jí)數(shù)交錯(cuò)級(jí)數(shù)(萊布尼茨定理萊布尼茨定理)3.按基本性質(zhì)按基本性質(zhì);,則則級(jí)級(jí)數(shù)數(shù)收收斂斂若若SSn;, 0,則則級(jí)級(jí)數(shù)數(shù)發(fā)發(fā)散散當(dāng)當(dāng) nun一般項(xiàng)級(jí)數(shù)一般項(xiàng)級(jí)數(shù)4.絕對(duì)收斂絕對(duì)收斂6定義定義0,1 nnnuu.有界有界部分和所成的數(shù)列部分和所成的數(shù)列正項(xiàng)級(jí)數(shù)收斂正項(xiàng)級(jí)數(shù)收斂ns2 2、正項(xiàng)級(jí)數(shù)及其審斂法、正項(xiàng)級(jí)數(shù)及其審斂法審斂法審斂法(1) (1) 比較審斂法比較審斂法若若 1nnu收斂收斂( (發(fā)散發(fā)散
5、) )且且)(nnnnvuuv , ,則則 1nnv收收斂斂( (發(fā)發(fā)散散) ). .7(2) (2) 比較審斂法的極限形式比較審斂法的極限形式設(shè)設(shè) 1nnu與與 1nnv都是正項(xiàng)級(jí)數(shù)都是正項(xiàng)級(jí)數(shù),如果如果lvunnn lim,則則(1) 當(dāng)當(dāng) l0時(shí)時(shí),二級(jí)數(shù)有相同的斂散性二級(jí)數(shù)有相同的斂散性; (2) 當(dāng)當(dāng)0 l時(shí),若時(shí),若 1nnv收斂收斂,則則 1nnu收斂收斂; (3) 當(dāng)當(dāng) l時(shí)時(shí), 若若 1nnv發(fā)散發(fā)散,則則 1nnu發(fā)散發(fā)散;8設(shè)設(shè) 1nnu是是正正項(xiàng)項(xiàng)級(jí)級(jí)數(shù)數(shù),如如果果)(lim1 數(shù)數(shù)或或nnnuu則則1 時(shí)級(jí)數(shù)收斂時(shí)級(jí)數(shù)收斂;1 時(shí)級(jí)數(shù)發(fā)散時(shí)級(jí)數(shù)發(fā)散; 1 時(shí)失效時(shí)失效
6、.設(shè)設(shè) 1nnu是正項(xiàng)級(jí)數(shù)是正項(xiàng)級(jí)數(shù), ,如果如果 nnnulim)( 為數(shù)或?yàn)閿?shù)或 , ,則則1 時(shí)級(jí)數(shù)收斂時(shí)級(jí)數(shù)收斂; ; 1 時(shí)級(jí)數(shù)發(fā)散時(shí)級(jí)數(shù)發(fā)散; ;1 時(shí)失效時(shí)失效. .9定義定義 正正 、負(fù)項(xiàng)相間的級(jí)數(shù)稱為交錯(cuò)級(jí)數(shù)、負(fù)項(xiàng)相間的級(jí)數(shù)稱為交錯(cuò)級(jí)數(shù). . nnnnnnuu 111)1()1(或或)0( nu其中其中3 3、交錯(cuò)級(jí)數(shù)及其審斂法、交錯(cuò)級(jí)數(shù)及其審斂法10定義定義 正項(xiàng)和負(fù)項(xiàng)任意出現(xiàn)的級(jí)數(shù)稱為任意項(xiàng)級(jí)數(shù)正項(xiàng)和負(fù)項(xiàng)任意出現(xiàn)的級(jí)數(shù)稱為任意項(xiàng)級(jí)數(shù).定定理理 若若 1nnu收收斂斂,則則 1nnu收收斂斂.定義定義: :若若 1nnu收斂收斂, , 則稱則稱 0nnu為絕對(duì)收斂為絕對(duì)收斂
7、; ;若若 1nnu發(fā)發(fā)散散, ,而而 1nnu收收斂斂, , 則則稱稱 1nnu為為條條件件收收斂斂. .4 4、任意項(xiàng)級(jí)數(shù)及其審斂法、任意項(xiàng)級(jí)數(shù)及其審斂法115 5、函數(shù)項(xiàng)級(jí)數(shù)、函數(shù)項(xiàng)級(jí)數(shù)(1) (1) 定義定義設(shè)設(shè)),(,),(),(21xuxuxun是是定定義義在在RI 上上的的函函數(shù)數(shù), ,則則 )()()(211xuxuxunn稱稱為為定定義義在在區(qū)區(qū)間間I上上的的( (函函數(shù)數(shù)項(xiàng)項(xiàng)) )無無窮窮級(jí)級(jí)數(shù)數(shù). .(2) (2) 收斂點(diǎn)與收斂域收斂點(diǎn)與收斂域如如果果Ix 0,數(shù)數(shù)項(xiàng)項(xiàng)級(jí)級(jí)數(shù)數(shù) 10)(nnxu收收斂斂,12則稱則稱0 x為級(jí)數(shù)為級(jí)數(shù))(1xunn 的的收斂點(diǎn)收斂點(diǎn), ,
8、否否則則稱稱為為發(fā)發(fā)散散點(diǎn)點(diǎn). .所有發(fā)散點(diǎn)的全體稱為所有發(fā)散點(diǎn)的全體稱為發(fā)散域發(fā)散域. .函數(shù)項(xiàng)級(jí)數(shù)函數(shù)項(xiàng)級(jí)數(shù))(1xunn 的所有收斂點(diǎn)的全體稱為的所有收斂點(diǎn)的全體稱為收斂域收斂域, ,(3) (3) 和函數(shù)和函數(shù)13(1) (1) 定義定義形如形如nnnxxa)(00 的級(jí)數(shù)稱為的級(jí)數(shù)稱為冪級(jí)數(shù)冪級(jí)數(shù).,00時(shí)時(shí)當(dāng)當(dāng) x其其中中na為為冪冪級(jí)級(jí)數(shù)數(shù)系系數(shù)數(shù).6 6、冪級(jí)數(shù)、冪級(jí)數(shù)nnnxa 014定理定理 1 (1 (AbelAbel 定理定理) )(2) (2) 收斂性收斂性15如如果果冪冪級(jí)級(jí)數(shù)數(shù) 0nnnxa不不是是僅僅在在0 x一一點(diǎn)點(diǎn)收收斂斂, ,也也不不是是在在整整個(gè)個(gè)數(shù)數(shù)軸
9、軸上上都都收收斂斂, ,則則必必有有一一個(gè)個(gè)完完全全確確定定的的正正數(shù)數(shù)R存存在在, ,它它具具有有下下列列性性質(zhì)質(zhì): :當(dāng)當(dāng)Rx 時(shí)時(shí), ,冪冪級(jí)級(jí)數(shù)數(shù)絕絕對(duì)對(duì)收收斂斂; ;當(dāng)當(dāng)Rx 時(shí)時(shí),冪級(jí)數(shù)發(fā)散冪級(jí)數(shù)發(fā)散;當(dāng)當(dāng)RxRx 與與時(shí)時(shí), ,冪級(jí)數(shù)可能收斂也可能發(fā)散冪級(jí)數(shù)可能收斂也可能發(fā)散. .推論推論16定義定義: : 正數(shù)正數(shù)R稱為冪級(jí)數(shù)的稱為冪級(jí)數(shù)的收斂半徑收斂半徑.冪級(jí)數(shù)的收斂域稱為冪級(jí)數(shù)的冪級(jí)數(shù)的收斂域稱為冪級(jí)數(shù)的收斂區(qū)間收斂區(qū)間.定定理理 2 2 如如果果冪冪級(jí)級(jí)數(shù)數(shù) 0nnnxa的的所所有有系系數(shù)數(shù)0 na,設(shè)設(shè) nnnaa1lim (或或 nnnalim)(1) 則則當(dāng)當(dāng)0 時(shí)
10、時(shí), 1R;(3) 當(dāng)當(dāng) 時(shí)時(shí),0 R.(2) 當(dāng)當(dāng)0 時(shí)時(shí), R;17a.a.代數(shù)運(yùn)算性質(zhì)代數(shù)運(yùn)算性質(zhì): : 加減法加減法 00nnnnnnxbxa.0 nnnxc(其中其中 21,minRRR )nnnbac RRx, ,2100RRxbxannnnnn和和的收斂半徑各為的收斂半徑各為和和設(shè)設(shè) (3)(3)冪級(jí)數(shù)的運(yùn)算冪級(jí)數(shù)的運(yùn)算18乘法乘法)()(00 nnnnnnxbxa.0 nnnxc RRx, (其中其中)0110bababacnnnn 除法除法 00nnnnnnxbxa.0 nnnxc)0(0 nnnxb收斂域內(nèi)收斂域內(nèi)19b.b.和函數(shù)的分析運(yùn)算性質(zhì)和函數(shù)的分析運(yùn)算性質(zhì): :
11、冪冪級(jí)級(jí)數(shù)數(shù) 0nnnxa的的和和函函數(shù)數(shù))(xs在在收收斂斂區(qū)區(qū)間間),(RR 內(nèi)內(nèi)連連續(xù)續(xù),在在端端點(diǎn)點(diǎn)收收斂斂,則則在在端端點(diǎn)點(diǎn)單單側(cè)側(cè)連連續(xù)續(xù). 冪級(jí)數(shù)冪級(jí)數(shù) 0nnnxa的和函數(shù)的和函數(shù))(xs在收斂區(qū)間在收斂區(qū)間),(RR 內(nèi)可積內(nèi)可積,且對(duì)且對(duì)),(RRx 可逐項(xiàng)積分可逐項(xiàng)積分. 冪級(jí)數(shù)冪級(jí)數(shù) 0nnnxa的和函數(shù)的和函數(shù))(xs在收斂區(qū)間在收斂區(qū)間),(RR 內(nèi)可導(dǎo)內(nèi)可導(dǎo), 并可逐項(xiàng)求導(dǎo)任意次并可逐項(xiàng)求導(dǎo)任意次.207 7、冪級(jí)數(shù)展開式、冪級(jí)數(shù)展開式nnnxnf 0)(!)0(稱為稱為)(xf在點(diǎn)在點(diǎn)0 x的的麥克勞林級(jí)數(shù)麥克勞林級(jí)數(shù).(1) 定義定義21定理定理 )(xf在點(diǎn)
12、在點(diǎn)0 x的泰勒級(jí)數(shù)的泰勒級(jí)數(shù), ,在在)(0 xU 內(nèi)收內(nèi)收斂于斂于)(xf在在)(0 xU 內(nèi)內(nèi)0)(lim xRnn. .(2) 充要條件充要條件(3) 唯一性唯一性定理定理 如果函數(shù)如果函數(shù))(xf在在)(0 xU 內(nèi)內(nèi)能能展開成展開成)(0 xx 的冪級(jí)數(shù)的冪級(jí)數(shù), , 即即 nnnxxaxf)()(00 , ,則其系數(shù)則其系數(shù) ), 2 , 1 , 0()(!10)( nxfnann且展開式是唯一的且展開式是唯一的. .22(3) 展開方法展開方法a.a.直接法直接法( (泰勒級(jí)數(shù)法泰勒級(jí)數(shù)法) )步驟步驟:;!)()1(0)(nxfann 求求,)(0lim)2()(MxfRnn
13、n 或或討論討論).(xf斂于斂于則級(jí)數(shù)在收斂區(qū)間內(nèi)收則級(jí)數(shù)在收斂區(qū)間內(nèi)收b.b.間接法間接法 根據(jù)唯一性根據(jù)唯一性, 利用常見展開式利用常見展開式, 通過通過變量代換變量代換, 四則運(yùn)算四則運(yùn)算, 恒等變形恒等變形, 逐項(xiàng)求導(dǎo)逐項(xiàng)求導(dǎo), 逐項(xiàng)積逐項(xiàng)積分分等方法等方法,求展開式求展開式.23),(!1! 2112 xxnxxenx )!12()1(! 51! 31sin1253nxxxxxnn),( x )!2()1(! 41! 211cos242nxxxxnn),( x(4) 常見函數(shù)展開式常見函數(shù)展開式24)1 , 1( x nxnnxxx!)1()1(! 2)1(1)1(2 )1ln(x
14、 nxxxxnn 132)1(31211 , 1( x25(1) (1) 三角函數(shù)系三角函數(shù)系,sin,cos,2sin,2cos,sin,cos, 1nxnxxxxx.,上的積分等于零上的積分等于零任意兩個(gè)不同函數(shù)在任意兩個(gè)不同函數(shù)在正交性正交性 , 0cos nxdx, 0sin nxdx三角函數(shù)系三角函數(shù)系8 8、傅里葉級(jí)數(shù)、傅里葉級(jí)數(shù)26 nmnmnxdxmx, 0sinsin nmnmnxdxmx, 0coscos0cossin nxdxmx), 2 , 1,( nm其其中中(2) (2) 傅里葉級(jí)數(shù)傅里葉級(jí)數(shù) 10)sincos(2nnnnxbnxaa定義定義三角級(jí)數(shù)三角級(jí)數(shù)27其
15、中其中 ), 2 , 1(,sin)(1), 2 , 1 , 0(,cos)(1nnxdxxfbnnxdxxfann稱為傅里葉級(jí)數(shù)稱為傅里葉級(jí)數(shù). 10)sincos(2nnnnxbnxaa28(3) (3) 狄利克雷狄利克雷(Dirichlet(Dirichlet) )充分條件充分條件( (收斂定理收斂定理) ) 設(shè)設(shè))(xf是是以以 2為為周周期期的的周周期期函函數(shù)數(shù).如如果果它它滿滿足足條條件件:在在一一個(gè)個(gè)周周期期內(nèi)內(nèi)連連續(xù)續(xù)或或只只有有有有限限個(gè)個(gè)第第一一類類間間斷斷點(diǎn)點(diǎn),并并且且至至多多只只有有有有限限個(gè)個(gè)極極值值點(diǎn)點(diǎn),則則)(xf的的傅傅里里葉葉級(jí)級(jí)數(shù)數(shù)收收斂斂,并并且且(1)
16、當(dāng)當(dāng)x是是)(xf的連續(xù)點(diǎn)時(shí)的連續(xù)點(diǎn)時(shí),級(jí)數(shù)收斂于級(jí)數(shù)收斂于)(xf;(2) 當(dāng)當(dāng)x是是)(xf的間斷點(diǎn)時(shí)的間斷點(diǎn)時(shí), 收斂于收斂于2)0()0( xfxf;29 如果如果)(xf為奇函數(shù)為奇函數(shù), 傅氏級(jí)數(shù)傅氏級(jí)數(shù)nxbnnsin1 稱為稱為正弦級(jí)數(shù)正弦級(jí)數(shù).(4) (4) 正弦級(jí)數(shù)與余弦級(jí)數(shù)正弦級(jí)數(shù)與余弦級(jí)數(shù) 當(dāng)當(dāng)周周期期為為 2的的奇奇函函數(shù)數(shù))(xf展展開開成成傅傅里里葉葉 級(jí)級(jí)數(shù)數(shù)時(shí)時(shí),它它的的傅傅里里葉葉系系數(shù)數(shù)為為 ), 2 , 1(sin)(2), 2 , 1 , 0(00 nnxdxxfbnann30 當(dāng)周期為當(dāng)周期為 2的偶函數(shù)的偶函數(shù))(xf展開成傅里葉級(jí)數(shù)展開成傅里葉級(jí)數(shù)時(shí)時(shí),它的傅里葉系數(shù)為它的傅里葉系數(shù)為), 2 , 1(0), 2 , 1 , 0(cos)(20 nbnnxdxxfann 如果如果)(xf為偶函數(shù)為偶函數(shù), 傅氏級(jí)數(shù)傅氏級(jí)數(shù)nxaanncos210 稱為稱為余弦級(jí)數(shù)余弦級(jí)數(shù).31奇延拓奇延拓: 0)(000)()(xxfxxxfxF令令的傅氏正弦級(jí)數(shù)的傅氏正弦級(jí)數(shù))(xf.sin)(1 nnnxbxf)0( x(5) (5) 周期的延拓周期的延拓32
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版暨南大學(xué)離婚心理學(xué)研究與應(yīng)用合同3篇
- 二零二五年度電梯門套綠色環(huán)保材料采購合同3篇
- 二零二五年度集團(tuán)高層管理人員聘任與職務(wù)調(diào)整合同6篇
- 二零二五年股票代持與反洗錢義務(wù)合同3篇
- 二零二五年駕駛員勞務(wù)派遣與車輛充電樁油耗管理服務(wù)合同3篇
- 二零二五版戶外拓展訓(xùn)練特色課程開發(fā)與推廣合同3篇
- 二零二五年度玻璃器皿生產(chǎn)設(shè)備租賃合同3篇
- 2025年度國(guó)際教育培訓(xùn)機(jī)構(gòu)合作合同6篇
- 展會(huì)展位搭建服務(wù)合同(2篇)
- 2025年度餐飲設(shè)施設(shè)備租賃合同書3篇
- 醫(yī)院手術(shù)室醫(yī)院感染管理質(zhì)量督查評(píng)分表
- 心內(nèi)電生理導(dǎo)管及器械
- 稱量與天平培訓(xùn)試題及答案
- 超全的超濾與納濾概述、基本理論和應(yīng)用
- 2020年醫(yī)師定期考核試題與答案(公衛(wèi)專業(yè))
- 2022年中國(guó)育齡女性生殖健康研究報(bào)告
- 各種靜脈置管固定方法
- 消防報(bào)審驗(yàn)收程序及表格
- 教育金規(guī)劃ppt課件
- 呼吸機(jī)波形分析及臨床應(yīng)用
- 常用緊固件選用指南
評(píng)論
0/150
提交評(píng)論